nn model

Intension:XOR is not linear-seperable

ML的本质都是分类,对线性不可分,一方面SVM映射到高维,
t a n h ( α ) = e x p ( α ) − e x p ( − α ) e x p ( α ) + e x p ( − α ) tanh(\alpha)=\frac{exp(\alpha)-exp(-\alpha)}{exp(\alpha)+exp(-\alpha)} tanh(α)=exp(α)+exp(−α)exp(α)−exp(−α),for easy normalization

梯度下降->Newton method

一阶导用于梯度下降,二阶导为动量,用于调整学习率

不同学习率调整方法的比较:

RMSProp对序列任务表现较为accurate;

Adam下降较快,测试效果较差;

  • n-元句子的概率计算公式? MLE for句子的最大似然概率
    P ( w 1 . . . w n ) ≈ ∏ i = 1 n P ( w i ∣ w i − 1 . . . w i − k ) P(w_1...w_n)\approx \prod_{i=1}^n P(w_i|w_{i-1}...w_{i-k}) P(w1...wn)≈∏i=1nP(wi∣wi−1...wi−k)
  • 学习方式:
  1. continuous bag of words
  2. skip-gram

?NN全参数可学习,

nn到语言模型的代入is simple,what's difficult?

  • Does Neural LM need smoothing?
    No,even if there are some variable is 0,the propagation proceeds successfully.
    for output random vector,which is unseen,can be expressed.
    But how does we predict from embedding vector to word.
  1. Linear+Softmax to one-hot vector to predict.
  • How does Neural LM capture long-term n-gram dependencies?

    LSTM for
    UNK is to represent every unseen words.

  • 语言的基础特征:前后缀、

    target hw1: 使用训练数据构建统计语言模型

相关推荐
董厂长2 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
亿牛云爬虫专家2 小时前
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
分布式·python·架构·kubernetes·爬虫代理·监测·采集
G皮T5 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼5 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间5 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享5 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾6 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码6 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5896 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
nananaij6 小时前
【Python进阶篇 面向对象程序设计(3) 继承】
开发语言·python·神经网络·pycharm