prompt,RAG,finetune,从零训练大模型对比

|--------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| | Prompt Engineering | RAG | 微调 | 从零训练大模型 |
| | 通过提供少量示例提供尽可能多的上下文,使基础模型更好地了解用例 | 增加了直接来自向量化信息存储的特定于用例的上下文 | 在特定领域的数据上更新模型权重 | 模型是在用例特定数据上从零开始训练的 |
| 准确性 | 与其他方法相比,它产生的结果最不准确 | 与Prompt Engineering相比,它产生的结果大大改善,而且产生幻觉的可能性非常低 | 也提供了相当精确的结果,输出的质量与RAG相当 | 产生幻觉的几率几乎为零,输出的准确率也是比较中最高的 |
| 实现的复杂性 | 相当低的实现复杂性 | 比Prompt Engineering具有更高的复杂性 | 更复杂 | 最高的实现复杂性 |
| 工作量投入 | 需要大量的迭代努力才能做到正确 基础模型对提示的措辞非常敏感,改变一个词甚至一个动词有时会产生完全不同的反应 | 由于涉及到创建嵌入和设置矢量存储的任务,RAG也需要很多的工作量,比Prompt Engineering要高一些 | 微调则比前两个要更加费力。 虽然微调可以用很少的数据完成(在某些情况下甚至大约或少于30个示例),但是设置微调并获得正确的可调参数值需要时间 | 从头开始训练是所有方法中最费力的方法。 它需要大量的迭代开发来获得具有正确技术和业务结果的最佳模型。 这个过程从收集和管理数据开始,设计模型体系结构,并使用不同的建模方法进行实验,以获得特定用例的最佳模型。 这个过程可能会很长(几周到几个月) |
| 灵活性 | 非常高的灵活性,因为只需要根据基础模型和用例的变化更改提示模板 | 很最高程度的灵活性 可以独立地更改嵌入模型、向量存储和LLM,而对其他组件的影响最小 | 灵活性非常低 因为数据和输入的任何更改都需要另一个微调周期,这可能非常复杂且耗时 | 灵活性最低的 |

  • 总结:
    • 准确性(低------>高):Prompt Engineering<RAG ≈微调<从零训练大模型
    • 实现复杂性(低------>高):Prompt Engineering<RAG <微调<从零训练大模型
    • 工作量投入(少------>多):Prompt Engineering<RAG <微调<从零训练大模型
    • 灵活性(少------>多):从零训练大模型<微调<Prompt Engineering<RAG

参考内容:Prompt、RAG、微调还是重新训练?如何选择正确的生成式AI的使用方法

相关推荐
一个天蝎座 白勺 程序猿14 小时前
豆包新模型与PromptPilot工具深度测评:AI应用开发的全流程突破
人工智能·ai·大模型·prompt·豆包
wei_shuo1 天前
「PromptPilot 大模型智能提示词平台」—— PromptPilot × 豆包大模型 1.6:客户投诉邮件高效回复智能提示词解决方案
prompt·提示词·promptpilot·豆包大模型
胡琦博客1 天前
LLM Prompt与开源模型资源(2)提示工程关键技术
人工智能·prompt
风雨中的小七2 天前
解密prompt系列58. MCP - 工具演变 & MCP基础
prompt
技术与健康2 天前
提示词增强工程(Prompt Enhancement Engineering)白皮书草稿
prompt
utmhikari2 天前
【GitHub探索】Prompt开发评测平台CozeLoop踩坑体验
ai·llm·prompt·agent·ddd·后端开发·coze
胡琦博客4 天前
LLM Prompt与开源模型资源(3)如何写一个好的 Prompt
数据库·开源·prompt
技术与健康6 天前
为什么我们需要提示词增强工程PEE(Prompt Enhancement Engineering )
prompt·pee·提示词增强工程
WilliamHu.6 天前
金融分类提示词演示
开发语言·python·大模型·prompt
linmoo19867 天前
Spring AI 系列之二十八 - Spring AI Alibaba-基于Nacos的prompt模版
人工智能·spring·nacos·prompt·springai·springaialibaba·动态提示词