【GitHub探索】Prompt开发评测平台CozeLoop踩坑体验

接续先前CozeStudio的文章,CozeLoop相对于CozeStudio,更加专注于Prompt Engineering,打磨整个Agent Prompt的效果。因此,本篇文章也分享一下笔者使用CozeLoop的体验,源码可以从这个Repo里面拉取。

CozeLoop也采用DDD的范式,但和CozeStudio稍微有区别。CozeLoop分为api、modules和infra三大层,但在modules里面就包含了评测集、评测实验、LLM、trace等模块,每个模块下面就有比较清晰的app、domain、infra的划分了,所以本质上还是符合DDD的范式的。

部署方面比较坑,CozeLoop没有CozeStudio那样开源的效果好,笔者折腾了很久才在本地跑起来服务。主要遇到了几个问题:

  • 主机用mac,但服务需要部署在linux/amd64的服务中,需要在Dockerfile以及各个安装脚本里面做兼容,比如指定架构platform、取消CGO等,防止指令集不兼容;
  • MySQL缺少默认DB,这个需要查下issue然后新增个sql+替换entrypoint.sh来解决;
  • cozeloop-broker起不来,这个发现是笔者自己的colima核数太少,加大核数调大sleep解决了。

开发方面,CozeLoop先是提供了一个Prompt调试界面,可以看到Prompt的运行结果,也有对比功能看不同模型不同Prompt对同一个问题的效果。然后评测方面,提供了评测集/评估器管理以及实验任务等功能。从评估器角度来看,评估器的Prompt需要有评测input、预期output以及实际output的输入,而被评估的Prompt必须得设置一个变量,引用评测集的input,才能让Prompt了解到每一次要评测哪个输入(也就是说,写一个面向评测的Prompt)。实验的过程也是submit任务,创建任务记录后,每条评测就开始自己在MQ里面Loop,推进结果了。由于注入变量这个事情官方文档讲的也不详细,也踩了一些坑,实际调试的时候,也可以根据每个测试的Trace结果,来判断实验是否按照预期执行。

相关推荐
BD_Marathon33 分钟前
大模型的特点与分类
ai
爱笑的眼睛1134 分钟前
深入理解MongoDB PyMongo API:从基础到高级实战
java·人工智能·python·ai
考拉悠然科技35 分钟前
双榜题名丨考拉悠然以 AI 创新力量,共筑成都产业新高地
ai
大卫小东(Sheldon)1 小时前
公司新来的00后老板让我们把数据库改成PostgreSQL,大家怒了😂
ai·postgre
Seal软件1 小时前
GPUStack v2:推理加速释放算力潜能,开源重塑大模型推理下半场
llm·gpu
FreeCode1 小时前
LangGraph1.0智能体开发:运行时系统
python·langchain·agent
信也科技布道师FTE2 小时前
当AMIS遇见AI智能体:如何为低代码开发装上“智慧大脑”?
人工智能·低代码·llm
智泊AI2 小时前
建议所有初学者都这样去微调大模型!
llm
大模型教程3 小时前
智能体变笨了是什么原因? 怎么优化?
程序员·llm·agent
大模型教程3 小时前
检索增强生成(RAG)与大语言模型微调(Fine-tuning)的差异、优势及使用场景详解
程序员·llm·agent