【GitHub探索】Prompt开发评测平台CozeLoop踩坑体验

接续先前CozeStudio的文章,CozeLoop相对于CozeStudio,更加专注于Prompt Engineering,打磨整个Agent Prompt的效果。因此,本篇文章也分享一下笔者使用CozeLoop的体验,源码可以从这个Repo里面拉取。

CozeLoop也采用DDD的范式,但和CozeStudio稍微有区别。CozeLoop分为api、modules和infra三大层,但在modules里面就包含了评测集、评测实验、LLM、trace等模块,每个模块下面就有比较清晰的app、domain、infra的划分了,所以本质上还是符合DDD的范式的。

部署方面比较坑,CozeLoop没有CozeStudio那样开源的效果好,笔者折腾了很久才在本地跑起来服务。主要遇到了几个问题:

  • 主机用mac,但服务需要部署在linux/amd64的服务中,需要在Dockerfile以及各个安装脚本里面做兼容,比如指定架构platform、取消CGO等,防止指令集不兼容;
  • MySQL缺少默认DB,这个需要查下issue然后新增个sql+替换entrypoint.sh来解决;
  • cozeloop-broker起不来,这个发现是笔者自己的colima核数太少,加大核数调大sleep解决了。

开发方面,CozeLoop先是提供了一个Prompt调试界面,可以看到Prompt的运行结果,也有对比功能看不同模型不同Prompt对同一个问题的效果。然后评测方面,提供了评测集/评估器管理以及实验任务等功能。从评估器角度来看,评估器的Prompt需要有评测input、预期output以及实际output的输入,而被评估的Prompt必须得设置一个变量,引用评测集的input,才能让Prompt了解到每一次要评测哪个输入(也就是说,写一个面向评测的Prompt)。实验的过程也是submit任务,创建任务记录后,每条评测就开始自己在MQ里面Loop,推进结果了。由于注入变量这个事情官方文档讲的也不详细,也踩了一些坑,实际调试的时候,也可以根据每个测试的Trace结果,来判断实验是否按照预期执行。

相关推荐
一个处女座的程序猿3 分钟前
CV之VLM之LLM-OCR:《DeepSeek-OCR 2: Visual Causal Flow》翻译与解读
llm·ocr·cv·vlm
阿杰学AI2 小时前
AI核心知识78——大语言模型之CLM(简洁且通俗易懂版)
人工智能·算法·ai·语言模型·rag·clm·语境化语言模型
这是个栗子4 小时前
AI辅助编程(二) - 通译千问
前端·ai·通译千问
Ryan老房4 小时前
开源vs商业-数据标注工具的选择困境
人工智能·yolo·目标检测·计算机视觉·ai
哥布林学者5 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(三)注意力机制
深度学习·ai
Learn Beyond Limits5 小时前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
猿小羽6 小时前
深入理解 Microservice Control Proxy(MCP) 的 AI 实战指南
微服务·ai·推荐系统·service mesh·microservice·mcp·ai 实战
冀博6 小时前
LangGraph实操-干中学
人工智能·ai
deephub6 小时前
让 AI 智能体学会自我进化:Agent Lightning 实战入门
人工智能·深度学习·大语言模型·agent
逻极6 小时前
Moltbot 快速入门指南(2026年1月最新版)
python·ai·aigc·智能助手·clawdbot·molbot