【GitHub探索】Prompt开发评测平台CozeLoop踩坑体验

接续先前CozeStudio的文章,CozeLoop相对于CozeStudio,更加专注于Prompt Engineering,打磨整个Agent Prompt的效果。因此,本篇文章也分享一下笔者使用CozeLoop的体验,源码可以从这个Repo里面拉取。

CozeLoop也采用DDD的范式,但和CozeStudio稍微有区别。CozeLoop分为api、modules和infra三大层,但在modules里面就包含了评测集、评测实验、LLM、trace等模块,每个模块下面就有比较清晰的app、domain、infra的划分了,所以本质上还是符合DDD的范式的。

部署方面比较坑,CozeLoop没有CozeStudio那样开源的效果好,笔者折腾了很久才在本地跑起来服务。主要遇到了几个问题:

  • 主机用mac,但服务需要部署在linux/amd64的服务中,需要在Dockerfile以及各个安装脚本里面做兼容,比如指定架构platform、取消CGO等,防止指令集不兼容;
  • MySQL缺少默认DB,这个需要查下issue然后新增个sql+替换entrypoint.sh来解决;
  • cozeloop-broker起不来,这个发现是笔者自己的colima核数太少,加大核数调大sleep解决了。

开发方面,CozeLoop先是提供了一个Prompt调试界面,可以看到Prompt的运行结果,也有对比功能看不同模型不同Prompt对同一个问题的效果。然后评测方面,提供了评测集/评估器管理以及实验任务等功能。从评估器角度来看,评估器的Prompt需要有评测input、预期output以及实际output的输入,而被评估的Prompt必须得设置一个变量,引用评测集的input,才能让Prompt了解到每一次要评测哪个输入(也就是说,写一个面向评测的Prompt)。实验的过程也是submit任务,创建任务记录后,每条评测就开始自己在MQ里面Loop,推进结果了。由于注入变量这个事情官方文档讲的也不详细,也踩了一些坑,实际调试的时候,也可以根据每个测试的Trace结果,来判断实验是否按照预期执行。

相关推荐
系'辞7 小时前
【obsidian指南】配置obsidian git插件,实现obsidian数据定时同步到github仓库(Mac电脑)
macos·github·agent·知识库
小小小小小鹿14 小时前
# 险些酿成P0事故!我用 AI 打造了 Android 代码评审“守门员”
agent·ai编程
kaizq14 小时前
AI-MCP-SQLite-SSE本地服务及CherryStudio便捷应用
python·sqlite·llm·sse·mcp·cherry studio·fastmcp
草帽lufei17 小时前
OpenAI API调用实践文本分类和内容生成
openai·agent
msober17 小时前
从零打造你的专属 AI Agent
agent
亚里随笔18 小时前
GenEnv:让AI智能体像人一样在_游戏_中成长
人工智能·游戏·llm·rl·agentic
少林码僧18 小时前
2.29 XGBoost、LightGBM、CatBoost对比:三大梯度提升框架选型指南
人工智能·机器学习·ai·数据挖掘·数据分析·回归
xiucai_cs19 小时前
本地搭建 AI 翻译服务:LM Studio + STranslate/Bob
ai·机器翻译
Golang编程笔记19 小时前
电商数据分析的未来发展路径
ai·数据挖掘·数据分析
图生生20 小时前
基于AI的商品场景图批量生成方案,助力电商大促效率翻倍
人工智能·ai