KNN算法对鸢尾花进行分类:添加网格搜索和交叉验证

优化------添加网格搜索和交叉验证

python 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
#KNN算法对鸢尾花进行分类:添加网格搜索和交叉验证

#1、获取数据
iris = load_iris()
#2、数据集划分
x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state = 22)
#3、特征工程------标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
#4、KNN算法预估器
estimator = KNeighborsClassifier()

#加入网格搜索和交叉验证
#参数准备
param_dict = {"n_neighbors":[1,3,5,7,9,11]}
estimator = GridSearchCV(estimator,param_grid = param_dict,cv=10)

estimator.fit(x_train,y_train)
#5、模型评估
#方法一:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("y_predict:\n",y_predict)
print("对真实值和预测值:\n",y_test == y_predict)
#方法二:计算准确率
score = estimator.score(x_test,y_test)
print("准确值为:\n",score)

#最佳参数best_params_
print("最佳参数:\n",estimator.best_params_)
#最佳结果best_score_
print("最佳结果:\n",estimator.best_score_)
#最佳估计量best_estimator_
print("最佳估计量:\n",estimator.best_estimator_)
#交叉验证结果
print("交叉验证结果:\n",estimator.cv_results_)
相关推荐
AI科技星1 小时前
加速运动正电荷产生加速度反向引力场的详细求导过程
人工智能·线性代数·算法·机器学习·矩阵·概率论
醉舞经阁半卷书112 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
码农水水13 小时前
米哈游Java面试被问:机器学习模型的在线服务和A/B测试
java·开发语言·数据库·spring boot·后端·机器学习·word
wanghao66645514 小时前
机器学习三大流派:监督、无监督与强化学习
人工智能·机器学习
梁辰兴14 小时前
FSD入华将如何改变我国自动驾驶市场格局?
人工智能·科技·机器学习·自动驾驶·特斯拉·fds·梁辰兴
Master_oid15 小时前
机器学习30:神经网络压缩(Network Compression)①
人工智能·神经网络·机器学习
沃达德软件15 小时前
智能车辆检索系统解析
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·目标跟踪
AI浩16 小时前
用于自动驾驶的ApolloScape数据集
人工智能·机器学习·自动驾驶
救救孩子把16 小时前
56-机器学习与大模型开发数学教程-5-3 最速下降法与动量法(Momentum)
人工智能·机器学习
李昊哲小课17 小时前
奶茶店销售额预测模型
python·机器学习·线性回归·scikit-learn