KNN算法对鸢尾花进行分类:添加网格搜索和交叉验证

优化------添加网格搜索和交叉验证

python 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
#KNN算法对鸢尾花进行分类:添加网格搜索和交叉验证

#1、获取数据
iris = load_iris()
#2、数据集划分
x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state = 22)
#3、特征工程------标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
#4、KNN算法预估器
estimator = KNeighborsClassifier()

#加入网格搜索和交叉验证
#参数准备
param_dict = {"n_neighbors":[1,3,5,7,9,11]}
estimator = GridSearchCV(estimator,param_grid = param_dict,cv=10)

estimator.fit(x_train,y_train)
#5、模型评估
#方法一:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("y_predict:\n",y_predict)
print("对真实值和预测值:\n",y_test == y_predict)
#方法二:计算准确率
score = estimator.score(x_test,y_test)
print("准确值为:\n",score)

#最佳参数best_params_
print("最佳参数:\n",estimator.best_params_)
#最佳结果best_score_
print("最佳结果:\n",estimator.best_score_)
#最佳估计量best_estimator_
print("最佳估计量:\n",estimator.best_estimator_)
#交叉验证结果
print("交叉验证结果:\n",estimator.cv_results_)
相关推荐
lky不吃香菜5 小时前
深度学习入门:从“流水线工人”到“变形金刚”的架构漫游指南
人工智能·机器学习
JJJJ_iii8 小时前
【机器学习05】神经网络、模型表示、前向传播、TensorFlow实现
人工智能·pytorch·python·深度学习·神经网络·机器学习·tensorflow
第六五8 小时前
DPC和DPC-KNN算法
人工智能·算法·机器学习
龙俊杰的读书笔记9 小时前
《小白学随机过程》第一章:随机过程——定义和形式 (附录1 探究随机变量)
人工智能·机器学习·概率论·随机过程和rl
Blossom.1189 小时前
把 AI“缝”进布里:生成式编织神经网络让布料自带摄像头
人工智能·python·单片机·深度学习·神经网络·目标检测·机器学习
koo36411 小时前
李宏毅机器学习笔记27
人工智能·笔记·机器学习
weixin_3776348411 小时前
【强化学习】RLMT强制 CoT提升训练效果
人工智能·算法·机器学习
材料科学研究11 小时前
固态电池AI设计:从DFT到机器学习!!!
机器学习·电池·固态电池·电池健康·高通量计算·电池寿命
渡我白衣12 小时前
《未来的 AI 操作系统(四)——AgentOS 的内核设计:调度、记忆与自我反思机制》
人工智能·深度学习·机器学习·语言模型·数据挖掘·人机交互·语音识别
he___H12 小时前
Kaggle机器学习初级的三种决策树
决策树·机器学习