【22-决策树】

决策树和树集成 decisiontrees and tree ensembles

决策树定义

决策树的工作原理

例子:猫分类,在一家猫咪收留中心,需要训练一个分类器快速地识别一个动物是否是猫;

输入特征:耳朵形状(尖的pointy 耷拉的floppy);脸形状;胡须whiskers;输出:是否是猫;

什么是决策树?

使用决策树学习算法对数据集进行训练后得到的模型,看起来像一棵树;树最顶端的叫根节点;椭圆型的叫决策节点,矩形框叫叶节点,用作输出预测结果;

除了示例的决策树,实际上还存在其他很多种决策树,它们根据每种特征的值做不同的选择,走不同的分支;这些决策树有些在测试数据集上表现地好,有些表现地差。

所以决策树学习算法的任务是,从所有可能的决策树中,选择一个在训练集上表现最好,并且泛化能力较强的决策树。

如何让算法根据训练集学习一个特定的决策树?

决策树的训练

构建决策树

对于给定一个训练集,构建决策树有几个步骤

1、决定在根节点使用哪个特征,选择在子节点使用哪个特征,然后尽可能将示例数据集全部分开(cat & not cat);

如何选择特征来拆分数据集;选择那些尽可能能将猫和其他动物区分开来的特征;区分之后的纯度尽可能高;

决策树学习算法必须在耳朵形状、脸型、胡须之间做选择,

熵entropy,如何估计杂质以及最小化杂质;

2、何时停止划分?

当一个节点全部为猫/非猫;

当拆分节点会导致树达到最大深度;节点的深度:从根节点到达该节点所需的步数;

当提高纯度得分超过了阈值;

当节点的示例数量低于某阈值;

限制树的深度:确保树不会太大,便于管理;保持小规模,以避免过拟合;

在一个节点上如何划分

熵,entropy,描述节点不纯度的一种说法;

一组数据全是猫/全不是猫,则纯度很高;

p1:一组中猫占的比例;

当p1 = 0.5时,即一半一半时,不纯度最高;

相关推荐
大江东去浪淘尽千古风流人物1 小时前
【VLN】VLN(Vision-and-Language Navigation视觉语言导航)算法本质,范式难点及解决方向(1)
人工智能·python·算法
努力学算法的蒟蒻2 小时前
day79(2.7)——leetcode面试经典150
算法·leetcode·职场和发展
2401_841495642 小时前
【LeetCode刷题】二叉树的层序遍历
数据结构·python·算法·leetcode·二叉树··队列
AC赳赳老秦2 小时前
2026国产算力新周期:DeepSeek实战适配英伟达H200,引领大模型训练效率跃升
大数据·前端·人工智能·算法·tidb·memcache·deepseek
2401_841495642 小时前
【LeetCode刷题】二叉树的直径
数据结构·python·算法·leetcode·二叉树··递归
budingxiaomoli2 小时前
优选算法-字符串
算法
qq7422349843 小时前
APS系统与OR-Tools完全指南:智能排产与优化算法实战解析
人工智能·算法·工业·aps·排程
A尘埃3 小时前
超市购物篮关联分析与货架优化(Apriori算法)
算法
.小墨迹3 小时前
apollo学习之借道超车的速度规划
linux·c++·学习·算法·ubuntu
不穿格子的程序员3 小时前
从零开始刷算法——贪心篇1:跳跃游戏1 + 跳跃游戏2
算法·游戏·贪心