体系班第十六节(图论)

邻接矩阵法

1图的数据结构抽象

cpp 复制代码
#include<vector>
#include<unordered_map>
#include<unordered_set>
using namespace std;
//点结构的描述,由值入度出度后继节点和边构成
class node {
public:
	int value;
	int in;
	int out;
	vector<node*> nexts;
	vector<edge*> edges;
	node(int val):value(val),in(0),out(0){}
};
//边由权重,出发点,终点组成
class edge {
public:
	int weight;
	node* from;
	node* to;
	edge(int wei,node *a,node *b):weight(wei),from(a),to(b){}
};
class graph {
public:
	unordered_map<int, node*> nodes;//哈希表是为了让一个点的值和节点对应起来
	unordered_set<edge*> edges;
	graph(){}//此时是一张空图所以什么也不用干
};
// matrix 所有的边
	// N*3 的矩阵
	// [weight, from节点上面的值,to节点上面的值]
	// 
	// [ 5 , 0 , 7]
	// [ 3 , 0,  1]
	// 
graph creategraph(vector<vector<int>>& matrix)
{
	graph g;
	for (auto& a : matrix)
	{
		int weight = a[0];
		int from = a[1];
		int to = a[2];
		//没有的节点就建出来
		if (g.nodes.find(from) == g.nodes.end())
		{
			g.nodes[from] = new node(from);
		}
		if (g.nodes.find(to) == g.nodes.end())
		{
			g.nodes[to] = new node(to);
		}
		node* fromnode = g.nodes[from];
		node* tonode = g.nodes[to];
		edge* newedge = new edge(weight, fromnode, tonode);
		fromnode->nexts.push_back(tonode);
		fromnode->out++;
		tonode->in++;
		fromnode->edges.push_back(newedge);
		g.edges.insert(newedge);
	}
	return g;
}

2图的宽度优先遍历

要用上set集合,不然可能会绕在回路里面

3深度优先遍历

一条路没走完就走到死,然后往上再找有没有其他路可走

栈里面永远放着目前整条路径

cpp 复制代码
#include<vector>
#include<queue>
#include<unordered_set>
#include<iostream>
#include<stack>
using namespace std;
//点结构的描述,由值入度出度后继节点和边构成
class node {
public:
	int value;
	vector<node*> nexts;
	node(int val):value(val){}
};
//实现图的广度优先遍历
void bfs(node* start)
{
	if (start == nullptr)
		return;
	queue<node*> q;
	unordered_set<node*> visited;
	q.push(start);
	visited.insert(start);
	while (!q.empty())
	{
		node* cur = q.front();
		q.pop();
		//经过的就打印
		cout << cur->value << " ";
		for (node* next : cur->nexts)
		{
			if (visited.find(next) != visited.end())
			{
				q.push(next);
				visited.insert(next);
			}
		}
	}
}
//实现图的深度优先遍历
void dfs(node* start)
{
	if (start == nullptr)
		return;
	stack<node*> stk;
	unordered_set<node*> visited;
	stk.push(start);
	visited.insert(start);
	cout << start->value << " ";
	while (!stk.empty())
	{
		node* cur = stk.top();
		bool found = false;//标记是否找到过尚未访问的后继节点
		for (node* next : cur->nexts)
		{
			if (visited.find(next) == visited.end()) {
				stk.push(next);
				visited.insert(next);
				cout << next->value << endl;
				found = true;
				break;
			}
		}//找到一个节点就跳出来了
		if (!found)
		{
			stk.pop();
		}
	}
}

4图的拓扑排序

最简单做法:用入度为0,然后把这个点影响彻底去掉

cpp 复制代码
#include <queue>
using namespace std;
class node {
public:
    int value;
    int in;
    vector<node*> nexts;
    node(int val) : value(val), in(0) {}
};
class graph {
public:
    unordered_map<int, node*> nodes;
    graph() {}
    vector<node*> sortedTopology()
    {
        unordered_map<node*, int> map;
        queue<node*> q;
        for (auto& entry : nodes)
        {
            node* no = entry.second;
            map[no] = no->in;
            if (no->in == 0)
            {
                q.push(no);
            }
        }
        vector<node*> result;
        while (!q.empty())
        {
            node* cur = q.front();
            q.pop();
            result.push_back(cur);
            for (node* next : cur->nexts)
            {
                map[next]--;//把该点的影响都消除
                if (map[next] == 0)
                {
                    q.push(next);
                }
            }
        }
        return result;
    }
};

其他数据结构表示时的拓扑序

cpp 复制代码
//一个点的"点次"比另一个大,说明拓扑序列一定在前面
//rocord缓存已经经过的点的点次
#include <iostream>
#include <vector>
#include <unordered_map>
#include <algorithm>
using namespace std;

class DirectedGraphNode {
public:
    int label;
    vector<DirectedGraphNode*> neighbors;

    DirectedGraphNode(int x) : label(x) {}
};

class Record {
public:
    DirectedGraphNode* node;
    long nodes;

    Record(DirectedGraphNode* n, long o) : node(n), nodes(o) {}
};

class MyComparator {
public:
    bool operator() (const Record& o1, const Record& o2) const {
        return o1.nodes == o2.nodes ? 0 : (o1.nodes > o2.nodes ? -1 : 1);
    }
};
Record f(DirectedGraphNode* cur, unordered_map<DirectedGraphNode*, Record>& order) {
    if (order.find(cur) != order.end()) {
        return order[cur];
    }
    long nodes = 0;
    for (DirectedGraphNode* next : cur->neighbors) {
        nodes += f(next, order).nodes;
    }
    Record ans(cur, nodes + 1);
    order[cur] = ans;
    return ans;
}

vector<DirectedGraphNode*> topSort(vector<DirectedGraphNode*>& graph) {
    unordered_map<DirectedGraphNode*, Record> order;
    for (DirectedGraphNode* cur : graph) {
        f(cur, order);
    }
    vector<Record> recordArr;
    for (auto& entry : order) {
        recordArr.push_back(entry.second);
    }
    sort(recordArr.begin(), recordArr.end(), MyComparator());
    vector<DirectedGraphNode*> ans;
    for (Record& r : recordArr) {
        ans.push_back(r.node);
    }
    return ans;
}
cpp 复制代码
//用比较深度的方法来求拓扑序
#include <iostream>
#include <vector>
#include <unordered_map>
#include <algorithm>
using namespace std;

class DirectedGraphNode {
public:
    int label;
    vector<DirectedGraphNode*> neighbors;

    DirectedGraphNode(int x) : label(x) {}
};

class Record {
public:
    DirectedGraphNode* node;
    int deep;

    Record(DirectedGraphNode* n, int o) : node(n), deep(o) {}
};

class MyComparator {
public:
    bool operator() (const Record& o1, const Record& o2) const {
        return o2.deep - o1.deep;
    }
};

Record f(DirectedGraphNode* cur, unordered_map<DirectedGraphNode*, Record>& order) {
    if (order.find(cur) != order.end()) {
        return order[cur];
    }
    int follow = 0;
    for (DirectedGraphNode* next : cur->neighbors) {
        follow = max(follow, f(next, order).deep);
    }
    Record ans(cur, follow + 1);
    order[cur] = ans;
    return ans;
}

vector<DirectedGraphNode*> topSort(vector<DirectedGraphNode*>& graph) {
    unordered_map<DirectedGraphNode*, Record> order;
    for (DirectedGraphNode* cur : graph) {
        f(cur, order);
    }
    vector<Record> recordArr;
    for (auto& entry : order) {
        recordArr.push_back(entry.second);
    }
    sort(recordArr.begin(), recordArr.end(), MyComparator());
    vector<DirectedGraphNode*> ans;
    for (Record& r : recordArr) {
        ans.push_back(r.node);
    }
    return ans;
}

5 克鲁斯卡尔算法求最小生成树

用并查集实现,每次从小的边开始选,如果这个边能形成环(也就是说这条边的两个端点已经在集合里面存在了)就不要这条边,不能的话就要

cpp 复制代码
#include <iostream>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;

class Node {
public:
    int value;
    Node(int x) : value(x) {}
};

class Edge {
public:
    int weight;
    Node* from;
    Node* to;
    Edge(int w, Node* f, Node* t) : weight(w), from(f), to(t) {}
};

class UnionFind {
private:
    unordered_map<Node*, Node*> fatherMap;
    unordered_map<Node*, int> sizeMap;

public:
    UnionFind() {}

    void makeSets(const vector<Node*>& nodes) {
        fatherMap.clear();
        sizeMap.clear();
        for (Node* node : nodes) {
            fatherMap[node] = node;
            sizeMap[node] = 1;
        }
    }

    Node* findFather(Node* n) {
        stack<Node*> path;
        while (n != fatherMap[n]) {
            path.push(n);
            n = fatherMap[n];
        }
        while (!path.empty()) {
            fatherMap[path.top()] = n;
            path.pop();
        }
        return n;
    }

    bool isSameSet(Node* a, Node* b) {
        return findFather(a) == findFather(b);
    }

    void unionSets(Node* a, Node* b) {
        if (!a || !b) {
            return;
        }
        Node* aDai = findFather(a);
        Node* bDai = findFather(b);
        if (aDai != bDai) {
            int aSetSize = sizeMap[aDai];
            int bSetSize = sizeMap[bDai];
            if (aSetSize <= bSetSize) {
                fatherMap[aDai] = bDai;
                sizeMap[bDai] += aSetSize;
                sizeMap.erase(aDai);
            } else {
                fatherMap[bDai] = aDai;
                sizeMap[aDai] += bSetSize;
                sizeMap.erase(bDai);
            }
        }
    }
};

class EdgeComparator {
public:
    bool operator() (const Edge& o1, const Edge& o2) const {
        return o1.weight > o2.weight; // 改为从大到小排序
    }
};

unordered_set<Edge> kruskalMST(const vector<Edge>& edges, const vector<Node*>& nodes) {
    UnionFind unionFind;
    unionFind.makeSets(nodes);
    priority_queue<Edge, vector<Edge>, EdgeComparator> priorityQueue;
    for (const Edge& edge : edges) {
        priorityQueue.push(edge);
    }
    unordered_set<Edge> result;
    while (!priorityQueue.empty()) {
        Edge edge = priorityQueue.top();
        priorityQueue.pop();
        if (!unionFind.isSameSet(edge.from, edge.to)) {
            result.insert(edge);
            unionFind.unionSets(edge.from, edge.to);
        }
    }
    return result;
}

6 prim算法

从某一个点开始,选一个最小的边,同时把相连的点解锁,同时这两个点找最小的边

周而复始

cpp 复制代码
#include <iostream>
#include <vector>
#include <set>
#include <queue>
#include <climits>
using namespace std;

class Edge {
public:
    int weight;
    Node* from;
    Node* to;
    Edge(int w, Node* f, Node* t) : weight(w), from(f), to(t) {}
};

class EdgeComparator {
public:
    bool operator() (const Edge& o1, const Edge& o2) const {
        return o1.weight > o2.weight; // 改为从大到小排序
    }
};

set<Edge> primMST(Graph& graph) {
    // 解锁的边进入小根堆
    priority_queue<Edge, vector<Edge>, EdgeComparator> priorityQueue;

    // 哪些点被解锁出来了
    set<Node*> nodeSet;

    set<Edge> result; // 依次挑选的的边在result里

    for (auto& it : graph.nodes) { // 随便挑了一个点
        Node* node = it.second;
        // node 是开始点
        if (nodeSet.find(node) == nodeSet.end()) {
            nodeSet.insert(node);
            for (Edge* edge : node->edges) { // 由一个点,解锁所有相连的边
                priorityQueue.push(*edge);
            }
            while (!priorityQueue.empty()) {
                Edge edge = priorityQueue.top(); // 弹出解锁的边中,最小的边
                priorityQueue.pop();
                Node* toNode = edge.to; // 可能的一个新的点
                if (nodeSet.find(toNode) == nodeSet.end()) { // 不含有的时候,就是新的点
                    nodeSet.insert(toNode);
                    result.insert(edge);
                    for (Edge* nextEdge : toNode->edges) {
                        priorityQueue.push(*nextEdge);
                    }
                }
            }
        }
        // break;//这里是防森林用的,如果确定只有一个图就注释掉
    }
    return result;
}

// 请保证graph是连通图
// graph[i][j]表示点i到点j的距离,如果是系统最大值代表无路
// 返回值是最小连通图的路径之和
int prim(vector<vector<int>>& graph) {
    int size = graph.size();
    vector<int> distances(size, INT_MAX);
    vector<bool> visit(size, false);
    visit[0] = true;
    for (int i = 0; i < size; i++) {
        distances[i] = graph[0][i];
    }
    int sum = 0;
    for (int i = 1; i < size; i++) {
        int minPath = INT_MAX;
        int minIndex = -1;
        for (int j = 0; j < size; j++) {
            if (!visit[j] && distances[j] < minPath) {
                minPath = distances[j];
                minIndex = j;
            }
        }
        if (minIndex == -1) {
            return sum;
        }
        visit[minIndex] = true;
        sum += minPath;
        for (int j = 0; j < size; j++) {
            if (!visit[j] && distances[j] > graph[minIndex][j]) {
                distances[j] = graph[minIndex][j];
            }
        }
    }
    return sum;
}

7单元最短路径算法Dijkstra

给一个点,求出他能到达的所有点最小值,到不了的为无穷

要标记所有已经选过的点,不能再选,慢的原因是不停遍历所有点选最小

还有用加强堆的优化

小根堆根据距离的大小组织,每次弹出堆顶,然后更新堆中元素,由于需要找到对应的点,所以必须用加强堆做

cpp 复制代码
#include <iostream>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <limits>

using namespace std;

// 前向声明类
class Node;
class Edge;

// 定义边(Edge)类
class Edge {
public:
    Node* to; // 指向的节点
    int weight; // 边的权重

    Edge(Node* t, int w) : to(t), weight(w) {} // 构造函数
};

// 定义节点(Node)类
class Node {
public:
    vector<Edge> edges; // 该节点连接的边
};

// Dijkstra算法实现,不考虑负权重
class Code01_Dijkstra {
public:
    // 使用哈希表实现的Dijkstra算法
    static unordered_map<Node*, int> dijkstra1(Node* from) {
        // 用起始节点初始化距离映射
        unordered_map<Node*, int> distanceMap;
        distanceMap[from] = 0;

        // 用于存储已选择节点的集合
        unordered_set<Node*> selectedNodes;
        
        // 查找具有最小距离且尚未选择的节点
        Node* minNode = getMinDistanceAndUnselectedNode(distanceMap, selectedNodes);

        // 直到所有节点都被选择为止
        while (minNode != nullptr) {
            int distance = distanceMap[minNode];
            
            // 更新相邻节点的距离
            for (Edge& edge : minNode->edges) {
                Node* toNode = edge.to;
                if (distanceMap.find(toNode) == distanceMap.end()) {
                    distanceMap[toNode] = distance + edge.weight;
                } else {
                    distanceMap[toNode] = min(distanceMap[toNode], distance + edge.weight);
                }
            }
            // 标记当前节点为已选择
            selectedNodes.insert(minNode);
            // 查找下一个具有最小距离的节点
            minNode = getMinDistanceAndUnselectedNode(distanceMap, selectedNodes);
        }
        return distanceMap;
    }

    // 获取未选择节点中距离最小的节点
    static Node* getMinDistanceAndUnselectedNode(unordered_map<Node*, int>& distanceMap, unordered_set<Node*>& touchedNodes) {
        Node* minNode = nullptr;
        int minDistance = numeric_limits<int>::max();
        for (auto& entry : distanceMap) {
            Node* node = entry.first;
            int distance = entry.second;
            if (touchedNodes.find(node) == touchedNodes.end() && distance < minDistance) {
                minNode = node;
                minDistance = distance;
            }
        }
        return minNode;
    }
};
cpp 复制代码
#include <iostream>
#include <vector>
#include <unordered_map>
#include <limits>

using namespace std;

// 前向声明类
class Node;
class Edge;
class NodeRecord;
class NodeHeap;

// 定义边(Edge)类
class Edge {
public:
    Node* to; // 指向的节点
    int weight; // 边的权重

    Edge(Node* t, int w) : to(t), weight(w) {} // 构造函数
};

// 定义节点(Node)类
class Node {
public:
    vector<Edge> edges; // 该节点连接的边
};

// 定义节点记录(NodeRecord)类
class NodeRecord {
public:
    Node* node; // 节点
    int distance; // 距离

    NodeRecord(Node* n, int d) : node(n), distance(d) {} // 构造函数
};

// 定义节点堆(NodeHeap)类
class NodeHeap {
private:
    Node** nodes; // 实际的堆结构
    unordered_map<Node*, int> heapIndexMap; // key: 节点, value: 堆中的位置
    unordered_map<Node*, int> distanceMap; // key: 节点, value: 从源节点出发到该节点的目前最小距离
    int size; // 堆上有多少个点

public:
    NodeHeap(int s) : size(s) {
        nodes = new Node*[size];
    }

    bool isEmpty() {
        return size == 0;
    }

    // 有一个点叫node,现在发现了一个从源节点出发到达node的距离为distance
    // 判断要不要更新,如果需要的话,就更新
    void addOrUpdateOrIgnore(Node* node, int distance) {
        if (inHeap(node)) {
            distanceMap[node] = min(distanceMap[node], distance);
            insertHeapify(node, heapIndexMap[node]);
        }
        if (!isEntered(node)) {
            nodes[size] = node;
            heapIndexMap[node] = size;
            distanceMap[node] = distance;
            insertHeapify(node, size++);
        }
    }

    NodeRecord pop() {
        NodeRecord nodeRecord = NodeRecord(nodes[0], distanceMap[nodes[0]]);
        swap(0, size - 1);
        heapIndexMap[nodes[size - 1]] = -1;
        distanceMap.erase(nodes[size - 1]);
        delete nodes[size - 1]; // C++ 需要手动释放内存
        nodes[size - 1] = nullptr;
        heapify(0, --size);
        return nodeRecord;
    }

private:
    void insertHeapify(Node* node, int index) {
        while (distanceMap[nodes[index]] < distanceMap[nodes[(index - 1) / 2]]) {
            swap(index, (index - 1) / 2);
            index = (index - 1) / 2;
        }
    }

    void heapify(int index, int size) {
        int left = index * 2 + 1;
        while (left < size) {
            int smallest = left + 1 < size && distanceMap[nodes[left + 1]] < distanceMap[nodes[left]]
                            ? left + 1
                            : left;
            smallest = distanceMap[nodes[smallest]] < distanceMap[nodes[index]] ? smallest : index;
            if (smallest == index) {
                break;
            }
            swap(smallest, index);
            index = smallest;
            left = index * 2 + 1;
        }
    }

    bool isEntered(Node* node) {
        return heapIndexMap.find(node) != heapIndexMap.end();
    }

    bool inHeap(Node* node) {
        return isEntered(node) && heapIndexMap[node] != -1;
    }

    void swap(int index1, int index2) {
        heapIndexMap[nodes[index1]] = index2;
        heapIndexMap[nodes[index2]] = index1;
        Node* tmp = nodes[index1];
        nodes[index1] = nodes[index2];
        nodes[index2] = tmp;
    }
};

// 改进后的Dijkstra算法
// 从head出发,生成到达每个节点的最小路径记录并返回
unordered_map<Node*, int> dijkstra2(Node* head, int size) {
    NodeHeap nodeHeap(size);
    nodeHeap.addOrUpdateOrIgnore(head, 0);
    unordered_map<Node*, int> result;
    while (!nodeHeap.isEmpty()) {
        NodeRecord record = nodeHeap.pop();
        Node* cur = record.node;
        int distance = record.distance;
        for (Edge& edge : cur->edges) {
            nodeHeap.addOrUpdateOrIgnore(edge.to, edge.weight + distance);
        }
        result[cur] = distance;
    }
    return result;
}
相关推荐
chan_lay2 天前
图论导引 - 目录、引言、第一章 - 11/05
笔记·图论
£suPerpanda2 天前
牛客周赛 Round65 补题DEF
开发语言·数据结构·c++·算法·深度优先·动态规划·图论
c沫栀3 天前
E-小H学历史(牛客练习赛131)
c++·算法·深度优先·图论
小冉在学习3 天前
day50 图论章节刷题Part02(99.岛屿数量 深搜、99.岛屿数量 广搜、100.岛屿的最大面积)
图论
weixin_478689763 天前
【图论】——理论基础总结
图论
夜雨翦春韭3 天前
【代码随想录Day60】图论Part11
java·数据结构·算法·leetcode·图论
夜雨翦春韭5 天前
【代码随想录Day52】图论Part04
java·数据结构·算法·leetcode·图论
X BoHang5 天前
10.31模拟赛题解
算法·图论
夜雨翦春韭5 天前
【代码随想录Day59】图论Part10
java·开发语言·数据结构·算法·leetcode·图论
deephub5 天前
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
人工智能·机器学习·图论·时间序列·1024程序员节