【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度

【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度

开挖!

还是计算文本之间相似度的实训,跟前两关区别不大。

需要注意的是 S M C SMC SMC的计算方式 s = f 11 + f 00 f 11 + f 00 + f 10 + f 01 s = \frac{f11+f00}{f11+f00+f10+f01} s=f11+f00+f10+f01f11+f00

代码如下:

python 复制代码
import numpy as np  
import jieba  
jieba.setLogLevel(jieba.logging.INFO)  
  
def smc_similarity(sentence1: str, sentence2: str) -> float:  
    # 1. 实现文本分词  
    ########## Begin ##########
    seg1 = [word for word in jieba.cut(sentence1)]  
    seg2 = [word for word in jieba.cut(sentence2)]  
    ########## End ##########
    # 2. 建立词库  
    ########## Begin ##########
    word_list = list(set([word for word in seg1 + seg2]))  
    ########## End ##########
    # 3. 统计各个文本在词典里出现词的次数  
    ########## Begin ##########
    word_counts_1 = np.array([len([word for word in seg1 if word==w]) for w in word_list])  
    word_counts_2 = np.array([len([word for word in seg2 if word==w]) for w in word_list])  
    ########## End ##########
    # 4. 余弦公式  
    ########## Begin ##########
    f00 = np.sum((word_counts_1 == 0) & (word_counts_2 == 0))  
    f01 = np.sum((word_counts_1 == 0) & (word_counts_2 != 0))  
    f10 = np.sum((word_counts_1 != 0) & (word_counts_2 == 0))  
    f11 = np.sum((word_counts_1 != 0) & (word_counts_2 != 0))  
    smc = (f00 + f11) / (f01 + f10 + f00 + f11)  
    ########## End ##########
      
    return smc  
  
str1 = "我爱北京天安门"  
str2 = "天安门雄伟壮阔让人不得不爱"  
  
sim1 = smc_similarity(str1, str2)  
  
print(sim1)
相关推荐
萧鼎2 小时前
深入理解 Python Scapy 库:网络安全与协议分析的瑞士军刀
开发语言·python·web安全
可乐+冰03 小时前
Android 编写高斯模糊功能
android·人工智能·opencv
嘀咕博客4 小时前
SynClub-百度在海外推出的AI社交产品
人工智能·百度·ai工具
AI算法工程师Moxi4 小时前
什么是迁移学习(transfer learning)
人工智能·机器学习·迁移学习
阿拉丁的梦4 小时前
教程1:用vscode->ptvsd-创建和调试一个UI(python)-转载官方翻译(有修正)
开发语言·python
名难取aaa5 小时前
celery solo acks_late得不到预期
python·celery
空白到白5 小时前
机器学习-KNN算法
人工智能·算法·机器学习
aliedudu5 小时前
机器学习概述
人工智能·机器学习
love you joyfully5 小时前
循环神经网络——pytorch实现循环神经网络(RNN、GRU、LSTM)
人工智能·pytorch·rnn·深度学习·gru·循环神经网络
袁庭新5 小时前
AI如何辅助创业?年轻人一定要创业
人工智能·创业