【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度

【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度

开挖!

还是计算文本之间相似度的实训,跟前两关区别不大。

需要注意的是 S M C SMC SMC的计算方式 s = f 11 + f 00 f 11 + f 00 + f 10 + f 01 s = \frac{f11+f00}{f11+f00+f10+f01} s=f11+f00+f10+f01f11+f00

代码如下:

python 复制代码
import numpy as np  
import jieba  
jieba.setLogLevel(jieba.logging.INFO)  
  
def smc_similarity(sentence1: str, sentence2: str) -> float:  
    # 1. 实现文本分词  
    ########## Begin ##########
    seg1 = [word for word in jieba.cut(sentence1)]  
    seg2 = [word for word in jieba.cut(sentence2)]  
    ########## End ##########
    # 2. 建立词库  
    ########## Begin ##########
    word_list = list(set([word for word in seg1 + seg2]))  
    ########## End ##########
    # 3. 统计各个文本在词典里出现词的次数  
    ########## Begin ##########
    word_counts_1 = np.array([len([word for word in seg1 if word==w]) for w in word_list])  
    word_counts_2 = np.array([len([word for word in seg2 if word==w]) for w in word_list])  
    ########## End ##########
    # 4. 余弦公式  
    ########## Begin ##########
    f00 = np.sum((word_counts_1 == 0) & (word_counts_2 == 0))  
    f01 = np.sum((word_counts_1 == 0) & (word_counts_2 != 0))  
    f10 = np.sum((word_counts_1 != 0) & (word_counts_2 == 0))  
    f11 = np.sum((word_counts_1 != 0) & (word_counts_2 != 0))  
    smc = (f00 + f11) / (f01 + f10 + f00 + f11)  
    ########## End ##########
      
    return smc  
  
str1 = "我爱北京天安门"  
str2 = "天安门雄伟壮阔让人不得不爱"  
  
sim1 = smc_similarity(str1, str2)  
  
print(sim1)
相关推荐
EEPI7 分钟前
【论文阅读】Vision Language Models are In-Context Value Learners
论文阅读·人工智能·语言模型
金融Tech趋势派8 分钟前
2026企业微信私有化部署新选择:微盛·企微管家如何助力企业数据安全与运营效率提升?
大数据·人工智能·云计算·企业微信
短视频矩阵源码定制8 分钟前
专业的矩阵系统哪个公司好
大数据·人工智能·矩阵
jimmyleeee10 分钟前
人工智能基础知识笔记三十:模型的混合量化策略
人工智能·笔记
Gofarlic_oms112 分钟前
Cadence许可证全生命周期数据治理方案
java·大数据·运维·开发语言·人工智能·安全·自动化
Nautiluss21 分钟前
一起调试XVF3800麦克风阵列(三)
linux·人工智能·嵌入式硬件·音频·语音识别·dsp开发·智能音箱
ShenZhenDingYue22 分钟前
电力智能安全警示器全面解析:构建智能电力安全防护新体系
人工智能·输电线路·电力警示·有电危险
福客AI智能客服24 分钟前
AI客服软件:3C数码配件电商的售后精准适配与体验优化核心
人工智能
TDengine (老段)24 分钟前
从“被动养护”到“主动预警”,TDengine IDMP 让智慧桥梁靠数据“说话”
大数据·数据库·人工智能·物联网·时序数据库·tdengine·涛思数据
机器人行业研究员25 分钟前
破局与重构:2025年中国六维力传感器产业的价值升维之路
人工智能·机器人·人机交互·六维力传感器·关节力传感器