【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度

【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度

开挖!

还是计算文本之间相似度的实训,跟前两关区别不大。

需要注意的是 S M C SMC SMC的计算方式 s = f 11 + f 00 f 11 + f 00 + f 10 + f 01 s = \frac{f11+f00}{f11+f00+f10+f01} s=f11+f00+f10+f01f11+f00

代码如下:

python 复制代码
import numpy as np  
import jieba  
jieba.setLogLevel(jieba.logging.INFO)  
  
def smc_similarity(sentence1: str, sentence2: str) -> float:  
    # 1. 实现文本分词  
    ########## Begin ##########
    seg1 = [word for word in jieba.cut(sentence1)]  
    seg2 = [word for word in jieba.cut(sentence2)]  
    ########## End ##########
    # 2. 建立词库  
    ########## Begin ##########
    word_list = list(set([word for word in seg1 + seg2]))  
    ########## End ##########
    # 3. 统计各个文本在词典里出现词的次数  
    ########## Begin ##########
    word_counts_1 = np.array([len([word for word in seg1 if word==w]) for w in word_list])  
    word_counts_2 = np.array([len([word for word in seg2 if word==w]) for w in word_list])  
    ########## End ##########
    # 4. 余弦公式  
    ########## Begin ##########
    f00 = np.sum((word_counts_1 == 0) & (word_counts_2 == 0))  
    f01 = np.sum((word_counts_1 == 0) & (word_counts_2 != 0))  
    f10 = np.sum((word_counts_1 != 0) & (word_counts_2 == 0))  
    f11 = np.sum((word_counts_1 != 0) & (word_counts_2 != 0))  
    smc = (f00 + f11) / (f01 + f10 + f00 + f11)  
    ########## End ##########
      
    return smc  
  
str1 = "我爱北京天安门"  
str2 = "天安门雄伟壮阔让人不得不爱"  
  
sim1 = smc_similarity(str1, str2)  
  
print(sim1)
相关推荐
折翼的恶魔6 分钟前
数据分析:合并二
python·数据分析·pandas
剪一朵云爱着17 分钟前
一文入门:机器学习
人工智能·机器学习
hi0_618 分钟前
机器学习实战(一): 什么是机器学习
人工智能·机器学习·机器人·机器学习实战
ChinaRainbowSea19 分钟前
9. LangChain4j + 整合 Spring Boot
java·人工智能·spring boot·后端·spring·langchain·ai编程
有Li31 分钟前
基于联邦学习与神经架构搜索的可泛化重建:用于加速磁共振成像|文献速递-最新医学人工智能文献
论文阅读·人工智能·文献·医学生
桃花键神41 分钟前
从传统到智能:3D 建模流程的演进与 AI 趋势 —— 以 Blender 为例
人工智能·3d·blender
星期天要睡觉1 小时前
计算机视觉(opencv)实战十七——图像直方图均衡化
人工智能·opencv·计算机视觉
大视码垛机1 小时前
速度与安全双突破:大视码垛机重构工业自动化新范式
大数据·数据库·人工智能·机器人·自动化·制造
feifeigo1231 小时前
星座SAR动目标检测(GMTI)
人工智能·算法·目标跟踪
WWZZ20251 小时前
视觉SLAM第10讲:后端2(滑动窗口与位子图优化)
c++·人工智能·后端·算法·ubuntu·机器人·自动驾驶