【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度

【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度

开挖!

还是计算文本之间相似度的实训,跟前两关区别不大。

需要注意的是 S M C SMC SMC的计算方式 s = f 11 + f 00 f 11 + f 00 + f 10 + f 01 s = \frac{f11+f00}{f11+f00+f10+f01} s=f11+f00+f10+f01f11+f00

代码如下:

python 复制代码
import numpy as np  
import jieba  
jieba.setLogLevel(jieba.logging.INFO)  
  
def smc_similarity(sentence1: str, sentence2: str) -> float:  
    # 1. 实现文本分词  
    ########## Begin ##########
    seg1 = [word for word in jieba.cut(sentence1)]  
    seg2 = [word for word in jieba.cut(sentence2)]  
    ########## End ##########
    # 2. 建立词库  
    ########## Begin ##########
    word_list = list(set([word for word in seg1 + seg2]))  
    ########## End ##########
    # 3. 统计各个文本在词典里出现词的次数  
    ########## Begin ##########
    word_counts_1 = np.array([len([word for word in seg1 if word==w]) for w in word_list])  
    word_counts_2 = np.array([len([word for word in seg2 if word==w]) for w in word_list])  
    ########## End ##########
    # 4. 余弦公式  
    ########## Begin ##########
    f00 = np.sum((word_counts_1 == 0) & (word_counts_2 == 0))  
    f01 = np.sum((word_counts_1 == 0) & (word_counts_2 != 0))  
    f10 = np.sum((word_counts_1 != 0) & (word_counts_2 == 0))  
    f11 = np.sum((word_counts_1 != 0) & (word_counts_2 != 0))  
    smc = (f00 + f11) / (f01 + f10 + f00 + f11)  
    ########## End ##########
      
    return smc  
  
str1 = "我爱北京天安门"  
str2 = "天安门雄伟壮阔让人不得不爱"  
  
sim1 = smc_similarity(str1, str2)  
  
print(sim1)
相关推荐
Σίσυφος190014 分钟前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
小鸡吃米…29 分钟前
机器学习的商业化变现
人工智能·机器学习
青春不朽51231 分钟前
Scrapy框架入门指南
python·scrapy
sali-tec31 分钟前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
2的n次方_33 分钟前
ops-math 极限精度优化:INT8/INT4 基础运算的底层指令集映射与核函数复用
人工智能
AI袋鼠帝35 分钟前
Claude4.5+Gemini3 接管电脑桌面,这回是真无敌了..
人工智能·windows·aigc
Lun3866buzha40 分钟前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
方见华Richard1 小时前
世毫九量子原住民教育理念全书
人工智能·经验分享·交互·原型模式·空间计算
忆~遂愿1 小时前
GE 引擎进阶:依赖图的原子性管理与异构算子协作调度
java·开发语言·人工智能
凯子坚持 c1 小时前
CANN-LLM:基于昇腾 CANN 的高性能、全功能 LLM 推理引擎
人工智能·安全