prompt开发生命周期

1.定义任务场景和成功标准

任务场景可分为简单任务:实体抽取、qa等

复杂任务:代码生成、创意写作等

在定义任务后,就要定义模型实现该任务的成功标准:

模型表现和准确率;延迟;价格。

2.开发测试用例

多样化的测试用例覆盖任务的典型应用和边缘情况。

3.设计初始的prompt

设计最初的prompt,从简单描述任务场景、回答的风格等开始。最好是使用few-shot的方式,告诉模型的输入输出格式。

4.针对测试用例评估prompt

将测试用例使用初始的prompt输入到模型,观察和评估回复内容,并与成功标准作比较。使用一致的评分标准,可以是人工评估、与答案核心内容的比较或是用其他模型的回答判断等。

5.优化prompt

根据评估结果,朝着成功标准迭代优化prompt。包括但不限于增加描述明细、示例、模型行为的约束。但是要注意不要过分优化小部分的输入,否则会过拟合。

6.部署prompt

一旦设计的prompt成功通过了测试用例,就可以将其应用。注意监控模型表现,边缘情况等意外仍随时可能发生。

准则:

  1. 清晰直接:提供清晰的指令和背景信息以指导Claude的回应。
  2. 使用示例:在提示中包含示例以展示期望的输出格式或风格。
  3. 赋予Claude角色:让Claude扮演一个特定的角色(如专家),以提升针对你的用例的表现。
  4. 使用XML标签:利用XML标签来结构化提示和回应,以提高清晰度。
  5. 分解提示:将复杂任务分解成更小、更易管理的步骤,以获得更好的结果。
  6. 让Claude思考:鼓励逐步思考以提高Claude输出的质量。
  7. 预填充Claude的回应:用几个词开始Claude的回应,以将其输出引向期望的方向。
  8. 控制输出格式:指定期望的输出格式以确保一致性和可读性。
  9. 请求Claude进行重写:基于评分标准请求修订,以促使Claude迭代并改进其输出。
  10. 利用长上下文窗口技巧:优化利用Claude长上下文窗口的提示。
相关推荐
xcLeigh20 小时前
AI的提示词专栏:Prompt 与传统机器学习特征工程的异同
人工智能·机器学习·ai·prompt·提示词
猫头虎1 天前
本地部署 Stable Diffusion3.5超详细教程
stable diffusion·开源·prompt·github·aigc·midjourney·ai编程
iFlow_AI1 天前
AI 驱动的代码审查与测试用例生成:iFlow CLI在提测阶段的应用实践
prompt·测试用例·测试·心流·iflow·iflowcli
趁你还年轻_1 天前
Prompt Engineering 基础技巧完全指南
prompt
猿类崛起@2 天前
2025秋招LLM大模型多模态面试题:110道大模型面试常见问题及答案,助你拿下AI工程师岗位!
人工智能·机器学习·ai·性能优化·大模型·prompt·大模型训练
海边夕阳20062 天前
【每天一个AI小知识】:什么是Prompt?
人工智能·prompt
极速learner2 天前
n8n本地安装的两种方法:小白入门大白话版本
人工智能·prompt
nvd112 天前
Agent架构升级:解决Gemini超大Prompt处理问题
架构·prompt
阿杰学AI2 天前
AI核心知识23——大语言模型之System Prompt(简洁且通俗易懂版)
人工智能·ai·语言模型·prompt·aigc·system prompt
AhaPuPu2 天前
LLM Agent Attack- Indirect Prompt Injection
网络·人工智能·prompt