prompt开发生命周期

1.定义任务场景和成功标准

任务场景可分为简单任务:实体抽取、qa等

复杂任务:代码生成、创意写作等

在定义任务后,就要定义模型实现该任务的成功标准:

模型表现和准确率;延迟;价格。

2.开发测试用例

多样化的测试用例覆盖任务的典型应用和边缘情况。

3.设计初始的prompt

设计最初的prompt,从简单描述任务场景、回答的风格等开始。最好是使用few-shot的方式,告诉模型的输入输出格式。

4.针对测试用例评估prompt

将测试用例使用初始的prompt输入到模型,观察和评估回复内容,并与成功标准作比较。使用一致的评分标准,可以是人工评估、与答案核心内容的比较或是用其他模型的回答判断等。

5.优化prompt

根据评估结果,朝着成功标准迭代优化prompt。包括但不限于增加描述明细、示例、模型行为的约束。但是要注意不要过分优化小部分的输入,否则会过拟合。

6.部署prompt

一旦设计的prompt成功通过了测试用例,就可以将其应用。注意监控模型表现,边缘情况等意外仍随时可能发生。

准则:

  1. 清晰直接:提供清晰的指令和背景信息以指导Claude的回应。
  2. 使用示例:在提示中包含示例以展示期望的输出格式或风格。
  3. 赋予Claude角色:让Claude扮演一个特定的角色(如专家),以提升针对你的用例的表现。
  4. 使用XML标签:利用XML标签来结构化提示和回应,以提高清晰度。
  5. 分解提示:将复杂任务分解成更小、更易管理的步骤,以获得更好的结果。
  6. 让Claude思考:鼓励逐步思考以提高Claude输出的质量。
  7. 预填充Claude的回应:用几个词开始Claude的回应,以将其输出引向期望的方向。
  8. 控制输出格式:指定期望的输出格式以确保一致性和可读性。
  9. 请求Claude进行重写:基于评分标准请求修订,以促使Claude迭代并改进其输出。
  10. 利用长上下文窗口技巧:优化利用Claude长上下文窗口的提示。
相关推荐
居7然2 天前
解锁AI大模型:Prompt工程全面解析
人工智能·prompt·提示词
Jinkxs3 天前
Prompt Engineering+AI工具链:打造个人专属的智能开发助手
人工智能·prompt
爱分享的飘哥3 天前
第六十六篇:AI模型的“口才”教练:Prompt构造策略与自动化实践
人工智能·自动化·prompt·aigc·数据集·llm训练·数据工程
编码小袁3 天前
Prompt工程师基础技术学习指南:从入门到实战
prompt
zhurui_xiaozhuzaizai4 天前
OpenAI官方写的GPT-5 prompt指南
gpt·prompt
sssammmm4 天前
AI入门学习--如何写好prompt?
人工智能·学习·prompt
zzywxc7875 天前
深入解析大模型落地的四大核心技术:微调、提示词工程、多模态应用 及 企业级解决方案,结合代码示例、流程图、Prompt案例及技术图表,提供可落地的实践指南。
人工智能·深度学习·机器学习·数据挖掘·prompt·流程图·editplus
科大饭桶8 天前
AI大模型专题:LLM大模型(Prompt提示词工程)
人工智能·语言模型·llm·prompt·deepseek
六毛的毛8 天前
LangChain入门:内存、记录聊天历史 ChatMessageHistory、模型、提示 ( Prompt )、模式 ( Schema )
人工智能·langchain·prompt
一个天蝎座 白勺 程序猿11 天前
豆包新模型与PromptPilot工具深度测评:AI应用开发的全流程突破
人工智能·ai·大模型·prompt·豆包