prompt开发生命周期

1.定义任务场景和成功标准

任务场景可分为简单任务:实体抽取、qa等

复杂任务:代码生成、创意写作等

在定义任务后,就要定义模型实现该任务的成功标准:

模型表现和准确率;延迟;价格。

2.开发测试用例

多样化的测试用例覆盖任务的典型应用和边缘情况。

3.设计初始的prompt

设计最初的prompt,从简单描述任务场景、回答的风格等开始。最好是使用few-shot的方式,告诉模型的输入输出格式。

4.针对测试用例评估prompt

将测试用例使用初始的prompt输入到模型,观察和评估回复内容,并与成功标准作比较。使用一致的评分标准,可以是人工评估、与答案核心内容的比较或是用其他模型的回答判断等。

5.优化prompt

根据评估结果,朝着成功标准迭代优化prompt。包括但不限于增加描述明细、示例、模型行为的约束。但是要注意不要过分优化小部分的输入,否则会过拟合。

6.部署prompt

一旦设计的prompt成功通过了测试用例,就可以将其应用。注意监控模型表现,边缘情况等意外仍随时可能发生。

准则:

  1. 清晰直接:提供清晰的指令和背景信息以指导Claude的回应。
  2. 使用示例:在提示中包含示例以展示期望的输出格式或风格。
  3. 赋予Claude角色:让Claude扮演一个特定的角色(如专家),以提升针对你的用例的表现。
  4. 使用XML标签:利用XML标签来结构化提示和回应,以提高清晰度。
  5. 分解提示:将复杂任务分解成更小、更易管理的步骤,以获得更好的结果。
  6. 让Claude思考:鼓励逐步思考以提高Claude输出的质量。
  7. 预填充Claude的回应:用几个词开始Claude的回应,以将其输出引向期望的方向。
  8. 控制输出格式:指定期望的输出格式以确保一致性和可读性。
  9. 请求Claude进行重写:基于评分标准请求修订,以促使Claude迭代并改进其输出。
  10. 利用长上下文窗口技巧:优化利用Claude长上下文窗口的提示。
相关推荐
weixin_446260853 天前
如何与AI对话,写好Prompt
人工智能·prompt
匹马夕阳3 天前
大模型(LLM)提示工程(Prompt Engineering)初识
人工智能·语言模型·prompt
AIGC大时代3 天前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
engchina3 天前
多模态抽取图片信息的 Prompt
prompt·多模态·抽取图片信息
SomeB1oody5 天前
获取OpenAI官方给ChatGPT的系统定义Prompt
人工智能·语言模型·chatgpt·prompt
旷野..5 天前
GPT 时代,精进编程思维 + 熟练 Prompt 是否是新的编程范式?
python·gpt·prompt
AIzealot无5 天前
论文解读之Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(CoT)
人工智能·语言模型·自然语言处理·prompt·提示词
confiself6 天前
大模型系列——投机解码:Prompt Lookup Decoding代码解读
prompt
杨过过儿6 天前
【Prompt Engineering】7 聊天机器人
人工智能·机器人·prompt
学习前端的小z6 天前
【AIGC】ChatGPT 结构化 Prompt 的高级应用
chatgpt·prompt·aigc