prompt开发生命周期

1.定义任务场景和成功标准

任务场景可分为简单任务:实体抽取、qa等

复杂任务:代码生成、创意写作等

在定义任务后,就要定义模型实现该任务的成功标准:

模型表现和准确率;延迟;价格。

2.开发测试用例

多样化的测试用例覆盖任务的典型应用和边缘情况。

3.设计初始的prompt

设计最初的prompt,从简单描述任务场景、回答的风格等开始。最好是使用few-shot的方式,告诉模型的输入输出格式。

4.针对测试用例评估prompt

将测试用例使用初始的prompt输入到模型,观察和评估回复内容,并与成功标准作比较。使用一致的评分标准,可以是人工评估、与答案核心内容的比较或是用其他模型的回答判断等。

5.优化prompt

根据评估结果,朝着成功标准迭代优化prompt。包括但不限于增加描述明细、示例、模型行为的约束。但是要注意不要过分优化小部分的输入,否则会过拟合。

6.部署prompt

一旦设计的prompt成功通过了测试用例,就可以将其应用。注意监控模型表现,边缘情况等意外仍随时可能发生。

准则:

  1. 清晰直接:提供清晰的指令和背景信息以指导Claude的回应。
  2. 使用示例:在提示中包含示例以展示期望的输出格式或风格。
  3. 赋予Claude角色:让Claude扮演一个特定的角色(如专家),以提升针对你的用例的表现。
  4. 使用XML标签:利用XML标签来结构化提示和回应,以提高清晰度。
  5. 分解提示:将复杂任务分解成更小、更易管理的步骤,以获得更好的结果。
  6. 让Claude思考:鼓励逐步思考以提高Claude输出的质量。
  7. 预填充Claude的回应:用几个词开始Claude的回应,以将其输出引向期望的方向。
  8. 控制输出格式:指定期望的输出格式以确保一致性和可读性。
  9. 请求Claude进行重写:基于评分标准请求修订,以促使Claude迭代并改进其输出。
  10. 利用长上下文窗口技巧:优化利用Claude长上下文窗口的提示。
相关推荐
石去皿21 小时前
Depth Viewer: 16-bit 深度图可视化工具
人工智能·chatgpt·prompt
猫头虎1 天前
2026全网最热Claude Skills工具箱,GitHub上最受欢迎的7大Skills开源AI技能库
langchain·开源·prompt·github·aigc·ai编程·agi
伊甸31 天前
基于LangChain4j从0到1搭建自己的的AI智能体并部署上线-1
java·langchain·prompt
汉克老师1 天前
小学生0基础学大语言模型应用(第 19 课《字符串提示词训练(Prompt Thinking)》)
人工智能·深度学习·机器学习·语言模型·prompt·提示词
北京地铁1号线1 天前
4.1 提示词(Prompt)工程
prompt
jimmyleeee1 天前
大模型安全之二:Prompt注入
安全·prompt
Yeats_Liao3 天前
微调决策树:何时使用Prompt Engineering,何时选择Fine-tuning?
前端·人工智能·深度学习·算法·决策树·机器学习·prompt
香芋Yu4 天前
【大模型教程——第四部分:大模型应用开发】第1章:提示工程与上下文学习 (Prompt Engineering & ICL)
学习·prompt
cheungxiongwei.com4 天前
使用 C++23 实现 Prompt DSL 的 Header-Only 解析器:从语法设计到工程落地
prompt·c++23
shangjian0074 天前
AI-大语言模型LLM-模型微调3-Prompt Tuning
人工智能·语言模型·prompt