语音识别:whisper部署服务器,可远程访问,实时语音转文字(全部代码和详细部署步骤)

Whisper是OpenAI于2022年发布的一个开源深度学习模型,专门用于语音识别任务。它能够将音频转换成文字,支持多种语言的识别,包括但不限于英语、中文、西班牙语等。Whisper模型的特点是它在多种不同的音频条件下(如不同的背景噪声水平、说话者的口音、语速等)都能实现高准确率的语音识别,这得益于它在训练过程中使用的大量多样化的音频数据。

Whisper模型使用了一系列先进的深度学习技术和架构,主要包括:

  • 自注意力机制(Self-Attention):Whisper模型中使用了自注意力机制,特别是变种形式的Transformer架构,这在处理序列数据(如音频)中尤其有效。
  • 端到端学习:Whisper采用端到端的训练方式,直接从原始音频数据学习到文本输出,无需人工提取特征。
  • 大规模数据集训练:它是在广泛的数据集上进行训练的,包括各种语言、口音和音频质量,这有助于提高模型的泛化能力和鲁棒性。

Whisper的开发和发布对于语音识别和人工智能领域有着重要的意义:

  • 提高语音识别的准确率:Whisper在多种测试集上显示出优越的性能,尤其是在噪声环境下和非英语语言的识别上。

  • 多语言支持:Whisper的多语言识别能力对于打破语言障碍、促进全球信息的交流和共享具有重要作用。

  • 开源共享:作为一个开源项目,Whisper为研究人员和开发者提供了一个强大的工具,可以在此基础上进一步开发定制化的语音识别应用,促进了技术的创新和应用的多样化。

  • 推动人工智能技术的发展:通过对Whisper模型的研究和应用,可以进一步推动相关领域,如自然语言处理、机器学习等领域的技术进步。

    pip install -U openai-whisper

    pip install git+https://github.com/openai/whisper.git

    on Ubuntu or Debian

    sudo apt update && sudo apt install ffmpeg

    on Arch Linux

    sudo pacman -S ffmpeg

    on MacOS using Homebrew (https://brew.sh/)

    brew install ffmpeg

    on Windows using Chocolatey (https://chocolatey.org/)

    choco install ffmpeg

    on Windows using Scoop (https://scoop.sh/)

    scoop install ffmpeg

    pip install setuptools-rust

运行:

复制代码
whisper 5.wav --language Chinese

python代码:

复制代码
import whisper

model = whisper.load_model("base")
result = model.transcribe("audio.mp3")
print(result["text"])

部署api服务:

繁体变简体:

复制代码
pip install opencc-python-reimplemented

from fastapi import FastAPI, File, UploadFile
from whisper import load_model
import asyncio
import uvicorn
from opencc import OpenCC

app = FastAPI()
model = load_model("small")  # 加载模型

@app.post("/transcribe/")
async def transcribe_audio(file: UploadFile = File(...)):
    contents = await file.read()
    with open("temp_audio.mp3", "wb") as f:  # 临时保存上传的音频文件
        f.write(contents)

    # 调用Whisper模型进行语音识别
    result = model.transcribe("temp_audio.mp3")
    text = result["text"]

    # 将繁体字转换为简体字
    cc = OpenCC('t2s')  # 繁体转简体
    simplified_text = cc.convert(text)

    return {"text": simplified_text}

if __name__ == "__main__":
    uvicorn.run("whisper_api:app", host="0.0.0.0", port=8000, reload=True)
相关推荐
The森7 分钟前
Linux IO模型纵深解析:文章索引
linux·运维·服务器
伊织萌1 小时前
在 Ubuntu 22.04 上安装 PostgreSQL
linux·服务器·ubuntu·postgresql·云计算
锅包一切1 小时前
一、什么是Linux?
linux·运维·服务器·操作系统
山峰哥2 小时前
数据库工程中的SQL调优实践:从索引策略到查询优化的深度探索
服务器·数据库·sql·性能优化·编辑器
袁袁袁袁满2 小时前
Docker后台日志和容器日志怎么查看?
linux·运维·服务器·docker·容器
Skrrapper2 小时前
【计算机网络】ep2:数据链路层概述
服务器·网络·计算机网络
喵~来学编程啦3 小时前
【一篇搞定配置】一篇带你从配置到使用(PyCharm远程)完成服务器运行项目(配置、使用一条龙)【全网最详细版】
服务器·python·pycharm
Trouvaille ~4 小时前
【Linux】高并发服务器的起点:五种 IO 模型与非阻塞 IO 本质解析
linux·运维·服务器·c++·操作系统·io模型·同步异步
wangbing11254 小时前
开发指南141-类和字节数组转换
java·服务器·前端
Trouvaille ~4 小时前
【Linux】select 多路转接深度剖析:从位图原理到字典服务器实现
linux·运维·服务器·c++·select·多路转接·io模型