国内大模型 T1 —— Kimi,解析二百万上下文无压力

两位百万?怎么做到的?

前段时间写过一篇文章:# GPT4-Turbor 128k ? 还不够?还不够!记得 GPT4-T 的上下文参数量 128k,也就大概 100 万英文字符、50 万汉字字符,kimi 是如何做到 double 的?

真的能做到吗?

上下文的扩充有尽头吗?

在前面文章里提到了 RAG 技术,即 生成式检索增强,它能通过 API 调用,请求页面或读取文件,优化检索数据,缩小文本或标记梳理,同时保留必要信息;然后使用文本分割器,将文档转换为段落、代码块,确定每段落大小;接着进行语义索引、并存储在向量数据库;在回复用户生成的内容前,选择与用户初始请求语义相关的段落块,插入到提示中。

白话来说就是将上下文提示语分块、分析、加权重、插入到提示,那么:如果能无限扩充上下文长度,RAG 技术还有意义吗?

Kimi 背后原理,官网做出了解释:# Kimi Chat 公布"大海捞针"长文本压测结果

这里的"针"就是"大上下文提示语"的核心,我们需要提取的、解析的核心:

有几个有意思的数据:

1、GPT-4 Turbo(128K)在语料长度超过 72K 且句子("针")藏在文本头部的时候,准确率不佳。(这也是我们前面提到过的)

2、而Claude 2.1似乎在语料长度超过20K 之后就开始准确率不佳,而且句子( 针)藏在语料靠前的位置时,准确率尤其差。

而 Kimi Chat 在"大海捞针"实验中的测试结果是这样的:

kimi 的测试结果好的让人意外!

那... kimi 究竟做对了什么?

官方也没明说,只是最后给了个这样的结论:

具体技术实现细节,背后是大量复杂的工程优化和算法创新设计,这也是 kimi 团队核心技术壁垒,不得而知。

内部成员的回复:

思考:

以后的大模型比拼什么?两点:

1、数据的精准性-各行业

2、计算能力、解析能力-这里的大文本上下文解析就算!


说到这里,我们不难发现:成长与发展是工作与生活的主旋律 ~ 最后,自荐一下我和机械工业出版社联合出版的 《程序员成长手记》 一书:全书分为3大模块、8个章节:从入门程序员到程序员自驱成长,回归纸质阅读,相信能给你一个更全局的程序员视野,提供成长帮助。京东搜"程序员成长手记"

OK,以上便是本次分享,希望各位喜欢~ 欢迎点赞、收藏、评论 🤟 我是安东尼 🤠 人气技术博主 💥 坚持千日更文 ✍ 关注我,安东尼陪你一起度过漫长编程岁月

相关推荐
风栖柳白杨2 分钟前
【语音识别】SenseVoice非流式改流式
人工智能·语音识别
Aloudata2 分钟前
企业落地 AI 数据分析,如何做好敏感数据安全防护?
人工智能·安全·数据挖掘·数据分析·chatbi·智能问数·dataagent
安达发公司2 分钟前
安达发|煤炭行业APS高级排产:开启高效生产新时代
大数据·人工智能·aps高级排程·安达发aps·车间排产软件·aps高级排产
中科天工3 分钟前
如何实现工业4.0智能制造的自动化包装解决方案?
大数据·人工智能·智能
ai_top_trends10 分钟前
AI 生成 PPT 工具横评:效率、质量、稳定性一次说清
人工智能·python·powerpoint
三千世界00613 分钟前
Claude Code Agent Skills 自动发现原理详解
人工智能·ai·大模型·agent·claude·原理
云和恩墨16 分钟前
数据库运维的下一步:Bethune X以AI实现从可观测到可处置
人工智能·aiops·数据库监控·数据库运维·数据库巡检
飞睿科技19 分钟前
探讨雷达在智能家居与消费电子领域的应用
人工智能·嵌入式硬件·智能家居·雷达·毫米波雷达
CoderJia程序员甲20 分钟前
GitHub 热榜项目 - 日榜(2026-1-15)
开源·大模型·llm·github·ai教程
沛沛老爹22 分钟前
Web转AI决策篇 Agent Skills vs MCP:选型决策矩阵与评估标准
java·前端·人工智能·架构·rag·web转型