国内大模型 T1 —— Kimi,解析二百万上下文无压力

两位百万?怎么做到的?

前段时间写过一篇文章:# GPT4-Turbor 128k ? 还不够?还不够!记得 GPT4-T 的上下文参数量 128k,也就大概 100 万英文字符、50 万汉字字符,kimi 是如何做到 double 的?

真的能做到吗?

上下文的扩充有尽头吗?

在前面文章里提到了 RAG 技术,即 生成式检索增强,它能通过 API 调用,请求页面或读取文件,优化检索数据,缩小文本或标记梳理,同时保留必要信息;然后使用文本分割器,将文档转换为段落、代码块,确定每段落大小;接着进行语义索引、并存储在向量数据库;在回复用户生成的内容前,选择与用户初始请求语义相关的段落块,插入到提示中。

白话来说就是将上下文提示语分块、分析、加权重、插入到提示,那么:如果能无限扩充上下文长度,RAG 技术还有意义吗?

Kimi 背后原理,官网做出了解释:# Kimi Chat 公布"大海捞针"长文本压测结果

这里的"针"就是"大上下文提示语"的核心,我们需要提取的、解析的核心:

有几个有意思的数据:

1、GPT-4 Turbo(128K)在语料长度超过 72K 且句子("针")藏在文本头部的时候,准确率不佳。(这也是我们前面提到过的)

2、而Claude 2.1似乎在语料长度超过20K 之后就开始准确率不佳,而且句子( 针)藏在语料靠前的位置时,准确率尤其差。

而 Kimi Chat 在"大海捞针"实验中的测试结果是这样的:

kimi 的测试结果好的让人意外!

那... kimi 究竟做对了什么?

官方也没明说,只是最后给了个这样的结论:

具体技术实现细节,背后是大量复杂的工程优化和算法创新设计,这也是 kimi 团队核心技术壁垒,不得而知。

内部成员的回复:

思考:

以后的大模型比拼什么?两点:

1、数据的精准性-各行业

2、计算能力、解析能力-这里的大文本上下文解析就算!


说到这里,我们不难发现:成长与发展是工作与生活的主旋律 ~ 最后,自荐一下我和机械工业出版社联合出版的 《程序员成长手记》 一书:全书分为3大模块、8个章节:从入门程序员到程序员自驱成长,回归纸质阅读,相信能给你一个更全局的程序员视野,提供成长帮助。京东搜"程序员成长手记"

OK,以上便是本次分享,希望各位喜欢~ 欢迎点赞、收藏、评论 🤟 我是安东尼 🤠 人气技术博主 💥 坚持千日更文 ✍ 关注我,安东尼陪你一起度过漫长编程岁月

相关推荐
大写-凌祁14 分钟前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
焦耳加热38 分钟前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
深空数字孪生40 分钟前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
悟乙己41 分钟前
Github | MoneyPrinterTurbo:自动化视频内容生成系统
自动化·github·音视频
wan5555cn1 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威2 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖2 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站2 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI2 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
雁于飞2 小时前
vscode中使用git、githup的基操
笔记·git·vscode·学习·elasticsearch·gitee·github