23 OpenCV 直方图比较

文章目录

直方图比较的目的

直方图比较的目的是衡量两幅图像之间的相似度或差异度。通过计算图像的颜色直方图并对其进行归一化处理,可以得到描述图像颜色分布的特征向量。然后,通过比较这些特征向量,我们可以评估两幅图像在颜色分布上的相似程度。

在计算直方图相似度时,常用的方法包括交叉相关性(Correlation)、卡方(Chi-Square)、巴氏距离(Bhattacharyya distance)等。这些方法可以帮助我们量化图像之间的相似性,从而在图像检索、匹配和分类等领域发挥重要作用。

在图像处理中,使用色调(Hue)和饱和度(Saturation)来计算直方图是一种常见的做法,主要有以下几个原因:

复制代码
颜色信息较为重要:色调和饱和度包含了图像中的颜色信息,而亮度(Value)通道往往受光照等因素影响较大,不太适合用于颜色分布的比较。

计算效率高:计算二维色调-饱和度直方图相对计算三维色调-饱和度-亮度直方图更为高效,可以降低计算复杂度。

颜色差异明显:色调和饱和度能够有效地表现不同颜色之间的差异,对于许多图像分析和检索任务已经足够。

相关性计算 (CV_COMP_CORREL)

卡方计算 (CV_COMP_CHISQR)

十字计算(CV_COMP_INTERSECT)

巴氏距离计算 (CV_COMP_BHATTACHARYYA )

compareHist 直方图比较算子

c 复制代码
compareHist(
InputArray h1, // 直方图数据,下同
InputArray H2,
int method// 比较方法,上述四种方法之一
)

示例

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

string convertToString(double d);

int main(int argc, char** argv) {
    // 读取图像
    Mat base, test1, test2;
    Mat hsvbase, hsvtest1, hsvtest2;
    base = imread("D:/vcprojects/images/test.jpg");
    if (!base.data) {
        printf("could not load image...\n");
        return -1;
    }
    test1 = imread("D:/vcprojects/images/lena.png");
    test2 = imread("D:/vcprojects/images/lenanoise.png");

    // 转换为HSV格式
    cvtColor(base, hsvbase, CV_BGR2HSV);
    cvtColor(test1, hsvtest1, CV_BGR2HSV);
    cvtColor(test2, hsvtest2, CV_BGR2HSV);

    // 设置直方图参数
    int h_bins = 50; // 色调(Hue)分组数量
    int s_bins = 60; // 饱和度(Saturation)分组数量
    int histSize[] = { h_bins, s_bins }; // 直方图的 bin 数量,二维直方图
    float h_ranges[] = { 0, 180 }; // 色调取值范围
    float s_ranges[] = { 0, 256 }; // 饱和度取值范围
    const float* ranges[] = { h_ranges, s_ranges }; // 取值范围数组
    int channels[] = { 0, 1 }; // 要计算直方图的通道
    
    // 计算直方图
    MatND hist_base;
    MatND hist_test1;
    MatND hist_test2;

    calcHist(&hsvbase, 1,  channels, Mat(), hist_base, 2, histSize, ranges, true, false);
    normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat());

    calcHist(&hsvtest1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
    normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());

    calcHist(&hsvtest2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
    normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());
    
    // 计算直方图相似度
    double basebase = compareHist(hist_base, hist_base, CV_COMP_INTERSECT);
    double basetest1 = compareHist(hist_base, hist_test1, CV_COMP_INTERSECT);
    double basetest2 = compareHist(hist_base, hist_test2, CV_COMP_INTERSECT);
    double tes1test2 = compareHist(hist_test1, hist_test2, CV_COMP_INTERSECT);
    printf("test1 compare with test2 correlation value :%f", tes1test2);

    // 在图像上显示相似度值
    Mat test12;
    test2.copyTo(test12);
    putText(base, convertToString(basebase), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
    putText(test1, convertToString(basetest1), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
    putText(test2, convertToString(basetest2), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
    putText(test12, convertToString(tes1test2), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
    
    // 创建窗口并显示图像
    namedWindow("base");
    namedWindow("test1");
    namedWindow("test2");
    namedWindow("test12");

    imshow("base", base);
    imshow("test1", test1);
    imshow("test2", test2);
    imshow("test12", test12);

    waitKey(0);
    return 0;
}

// 将double类型转换为字符串
string convertToString(double d) {
    ostringstream os;
    if (os << d)
        return os.str();
    return "invalid conversion";
}
相关推荐
Code-world-11 分钟前
NVIDIA Isaac Sim 安装教程
linux·人工智能·ubuntu·强化学习·isaac sim
猫天意31 分钟前
【深度学习小课堂】| torch | 升维打击还是原位拼接?深度解码 PyTorch 中 stack 与 cat 的几何奥义
开发语言·人工智能·pytorch·深度学习·神经网络·yolo·机器学习
cyyt34 分钟前
深度学习周报(1.12~1.18)
人工智能·算法·机器学习
摸鱼仙人~1 小时前
深度对比:Prompt Tuning、P-tuning 与 Prefix Tuning 有何不同?
人工智能·prompt
塔能物联运维1 小时前
隧道照明“智能进化”:PLC 通信 + AI 调光守护夜间通行生命线
大数据·人工智能
瑶光守护者1 小时前
【AI经典论文解读】《Denoising Diffusion Implicit Models(去噪扩散隐式模型)》论文深度解读
人工智能
wwwzhouhui1 小时前
2026年1月18日-Obsidian + AI,笔记效率提升10倍!一键生成Canvas和小红书风格笔记
人工智能·obsidian·skills
我星期八休息1 小时前
MySQL数据可视化实战指南
数据库·人工智能·mysql·算法·信息可视化
wuk9981 小时前
基于遗传算法优化BP神经网络实现非线性函数拟合
人工智能·深度学习·神经网络
码农三叔1 小时前
(1-3)人形机器人的发展历史、趋势与应用场景:人形机器人关键技术体系总览
人工智能·机器人