扩散模型零样本分类应用笔记

1 Title

Your Diffusion Model is Secretly a Zero-Shot Classifier(Alexander C. Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, Deepak Pathak)【ICCV 2023】

2 Conclusion

This paper shows that the density estimates from large-scale text-to-image diffusion models like Stable Diffusion can be leveraged to perform zero-shot classifi-cation without any additional training.

3 Good Sentences

1、Obtaining a diffusion model classifier through Bayes' theorem consists of repeatedly adding noise and computing a Monte Carlo estimate of the expected noise reconstruction losses (also called -prediction loss) for every class. We call this approach Diffusion Classifier.(The theory of this study that use diffusion model to make classification)

2、Discriminative approaches directly learn tomodel the decision boundary of the underlying task, while generative approaches learn to model the distribution of the data and then address the underlying task as a maximum likelihood estimation problem. (The principle of the generate mode that used in discrimination)

3、We split our evaluation into a series of stages, where in each stage we try each remaining ci some number of times and then remove the ones that have the highest average error. This allows us to efficiently eliminate classes that are almost certainly not the final output and allocate more compute to reasonable classes.(The improvement of this study for Efficient Classification)


对于像 Stable Diffusion 这种类型的 diffusion models,主要的步骤有两个,其一是 sampling,其二是 density estimation。而第二点又分为两种,unconditional density estimation 和 conditional density estimation,前者估计,后者估计

本文认为类似stable diffusion这样的大规模text2img模型所计算出的密度估计,可以被用来进行"零样本分类" (zero-shot classification),而不需要额外的训练。 也就是在大规模Text2Img任务中density estimation 这件事情几乎等价于 zero-shot classification without training,于是作者们将这一分类机制单独提炼出来,形成了 Diffusion Classifier 模型,并展示了这一模型有着很强的 multi-modal reasoning 的能力,它可以从含分类的 diffusion models 中提取出标准的分类器。

如何将diffusion model应用到zero-shot classification,具体流程图如上图所示:

对于一个分类模型,给定输入x,模型输出类别的概率向量c,对于这个diffusion model,分类任务就是求解。具体推导过程请看论文,这里不多赘述。

作者对比同为zero-shot classifier的CLIP,zero-shot的能力以及接近了基于renset50的CLIP。但与openCLIP ViT-H/14还有较大差距

相关推荐
sulikey25 分钟前
【Linux权限机制深入理解】为何没有目录写权限仍能修改文件权限?
linux·运维·笔记·ubuntu·centos
十安_数学好题速析28 分钟前
倍数关系:最多能选出多少个数
笔记·学习·高考
Hello_Embed1 小时前
STM32 环境监测项目笔记(一):DHT11 温湿度传感器原理与驱动实现
c语言·笔记·stm32·单片机·嵌入式软件
程序员大雄学编程2 小时前
「深度学习笔记4」深度学习优化算法完全指南:从梯度下降到Adam的实战详解
笔记·深度学习·算法·机器学习
新子y3 小时前
【小白笔记】PyTorch 和 Python 基础的这些问题
pytorch·笔记·python
rechol3 小时前
类与对象(中)笔记整理
java·javascript·笔记
新子y4 小时前
【小白笔记】KNN 核心预测函数 _predict_one 的过程
笔记
橘子是码猴子4 小时前
LangExtract:基于LLM的信息抽取框架 学习笔记
笔记·学习
柳安忆4 小时前
idea生成数据集调研
人工智能·笔记
aramae4 小时前
详细分析平衡树--红黑树(万字长文/图文详解)
开发语言·数据结构·c++·笔记·算法