扩散模型零样本分类应用笔记

1 Title

Your Diffusion Model is Secretly a Zero-Shot Classifier(Alexander C. Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, Deepak Pathak)【ICCV 2023】

2 Conclusion

This paper shows that the density estimates from large-scale text-to-image diffusion models like Stable Diffusion can be leveraged to perform zero-shot classifi-cation without any additional training.

3 Good Sentences

1、Obtaining a diffusion model classifier through Bayes' theorem consists of repeatedly adding noise and computing a Monte Carlo estimate of the expected noise reconstruction losses (also called -prediction loss) for every class. We call this approach Diffusion Classifier.(The theory of this study that use diffusion model to make classification)

2、Discriminative approaches directly learn tomodel the decision boundary of the underlying task, while generative approaches learn to model the distribution of the data and then address the underlying task as a maximum likelihood estimation problem. (The principle of the generate mode that used in discrimination)

3、We split our evaluation into a series of stages, where in each stage we try each remaining ci some number of times and then remove the ones that have the highest average error. This allows us to efficiently eliminate classes that are almost certainly not the final output and allocate more compute to reasonable classes.(The improvement of this study for Efficient Classification)


对于像 Stable Diffusion 这种类型的 diffusion models,主要的步骤有两个,其一是 sampling,其二是 density estimation。而第二点又分为两种,unconditional density estimation 和 conditional density estimation,前者估计,后者估计

本文认为类似stable diffusion这样的大规模text2img模型所计算出的密度估计,可以被用来进行"零样本分类" (zero-shot classification),而不需要额外的训练。 也就是在大规模Text2Img任务中density estimation 这件事情几乎等价于 zero-shot classification without training,于是作者们将这一分类机制单独提炼出来,形成了 Diffusion Classifier 模型,并展示了这一模型有着很强的 multi-modal reasoning 的能力,它可以从含分类的 diffusion models 中提取出标准的分类器。

如何将diffusion model应用到zero-shot classification,具体流程图如上图所示:

对于一个分类模型,给定输入x,模型输出类别的概率向量c,对于这个diffusion model,分类任务就是求解。具体推导过程请看论文,这里不多赘述。

作者对比同为zero-shot classifier的CLIP,zero-shot的能力以及接近了基于renset50的CLIP。但与openCLIP ViT-H/14还有较大差距

相关推荐
was17217 小时前
你的私有知识库:自托管 Markdown 笔记方案 NoteDiscovery
笔记·云原生·自部署
浅念-18 小时前
C++ string类
开发语言·c++·经验分享·笔记·学习
foolish..20 小时前
动态规划笔记
笔记·算法·动态规划
啊哈哈121381 天前
Python基本语法复盘笔记1(输入输出/字符串/列表)
开发语言·笔记·python
努力学习的小廉1 天前
redis学习笔记(五)—— set 数据类型
redis·笔记·学习
像豆芽一样优秀1 天前
Easy-Vibe Task03学习笔记
笔记·学习
Rsingstarzengjx1 天前
【Photoshop从入门到精通】 A17 修饰修复 笔记
笔记
EmbedLinX1 天前
嵌入式Linux根文件系统制作与移植
linux·服务器·笔记·学习
强子感冒了1 天前
Javascript学习笔记:BOM和DOM
javascript·笔记·学习
2501_901147831 天前
学习笔记|LeetCode 739 每日温度:从暴力枚举到单调栈线性最优解
笔记·学习·leetcode