从一例状态引发的性能问题谈Flink状态序列化

前言

好久不见(鞠躬最近处在转型期,每天忙到飞起,关注具体技术细节的精力自然就比较少了(上一篇许下的周更承诺也食言了 = =)。上周帮助他人快速解决了一个因误用Flink状态类型引发的性能问题,在这里做个quick notes,并简要介绍一下Flink状态序列化方面的基础知识。

问题及排查

上游部门同事反馈,一个计算逻辑并不复杂的多流join DataStream API作业频繁发生消费积压、checkpoint失败(现场截图已丢失)。作业拓扑如下图所示。

为了脱敏所以缩得很小 = =

按大状态作业的pattern对集群参数进行调优,未果。

通过Flink Web UI定位到问题点位于拓扑中倒数第二个算子,部分sub-task checkpoint总是过不去。观察Metrics面板,发现有少量数据倾斜,而上下游反压度量值全部为0。

经过持续观察,存在倾斜的sub-task数据量最多只比其他sub-task多出10%~15%,按照常理不应引起如此严重的性能问题。遂找到对应的TaskManager pod打印火焰图,结果如下。

可见RocksDB状态读写的耗时极长,大部分时间花在了Kryo序列化上,说明状态内存储了Flink序列化框架原生不支持的对象。直接让相关研发同学show me the code,真相大白:

private transient MapState<String, HashSet<String>> state1;
private transient MapState<String, HashSet<String>> state2;
private transient ValueState<Map<String, String>> state3;

Flink序列化框架内并没有针对HashSet的序列化器,自然会fallback到Kryo。即使这些Set并不算大,状态操作的开销也会急剧上升。当然,ValueState<Map<String, String>>用法也是错误的,应改成MapState<String, String>

最快的临时解决方法很简单:把所有状态内用到的HashSet全部改成Map<String, Boolean>,同样可以去重。虽然并不优雅,但因为有了原生MapSerializer支持,效率大幅提升。下面简要介绍Flink的状态序列化。

TypeSerializer

在我们创建状态句柄所需的描述符StateDescriptor时,要指定状态数据的类型,如:

ValueStateDescriptor<Integer> stateDesc = new ValueStateDescriptor<>("myState", Integer.class);
ValueState<Integer> state = this.getRuntimeContext().getState(stateDesc);

与此同时,也就指定了对应数据类型的Serializer。我们知道,TypeSerializer是Flink Runtime序列化机制的底层抽象,状态数据的序列化也不例外。以处理Map类型的MapSerializer为例,代码如下,比较清晰。

@Internal
public final class MapSerializer<K, V> extends TypeSerializer<Map<K, V>> {

    private static final long serialVersionUID = -6885593032367050078L;

    /** The serializer for the keys in the map */
    private final TypeSerializer<K> keySerializer;

    /** The serializer for the values in the map */
    private final TypeSerializer<V> valueSerializer;

    /**
     * Creates a map serializer that uses the given serializers to serialize the key-value pairs in
     * the map.
     *
     * @param keySerializer The serializer for the keys in the map
     * @param valueSerializer The serializer for the values in the map
     */
    public MapSerializer(TypeSerializer<K> keySerializer, TypeSerializer<V> valueSerializer) {
        this.keySerializer =
                Preconditions.checkNotNull(keySerializer, "The key serializer cannot be null");
        this.valueSerializer =
                Preconditions.checkNotNull(valueSerializer, "The value serializer cannot be null.");
    }

    // ------------------------------------------------------------------------
    //  MapSerializer specific properties
    // ------------------------------------------------------------------------

    public TypeSerializer<K> getKeySerializer() {
        return keySerializer;
    }

    public TypeSerializer<V> getValueSerializer() {
        return valueSerializer;
    }

    // ------------------------------------------------------------------------
    //  Type Serializer implementation
    // ------------------------------------------------------------------------

    @Override
    public boolean isImmutableType() {
        return false;
    }

    @Override
    public TypeSerializer<Map<K, V>> duplicate() {
        TypeSerializer<K> duplicateKeySerializer = keySerializer.duplicate();
        TypeSerializer<V> duplicateValueSerializer = valueSerializer.duplicate();

        return (duplicateKeySerializer == keySerializer)
                        && (duplicateValueSerializer == valueSerializer)
                ? this
                : new MapSerializer<>(duplicateKeySerializer, duplicateValueSerializer);
    }

    @Override
    public Map<K, V> createInstance() {
        return new HashMap<>();
    }

    @Override
    public Map<K, V> copy(Map<K, V> from) {
        Map<K, V> newMap = new HashMap<>(from.size());

        for (Map.Entry<K, V> entry : from.entrySet()) {
            K newKey = keySerializer.copy(entry.getKey());
            V newValue = entry.getValue() == null ? null : valueSerializer.copy(entry.getValue());

            newMap.put(newKey, newValue);
        }

        return newMap;
    }

    @Override
    public Map<K, V> copy(Map<K, V> from, Map<K, V> reuse) {
        return copy(from);
    }

    @Override
    public int getLength() {
        return -1; // var length
    }

    @Override
    public void serialize(Map<K, V> map, DataOutputView target) throws IOException {
        final int size = map.size();
        target.writeInt(size);

        for (Map.Entry<K, V> entry : map.entrySet()) {
            keySerializer.serialize(entry.getKey(), target);

            if (entry.getValue() == null) {
                target.writeBoolean(true);
            } else {
                target.writeBoolean(false);
                valueSerializer.serialize(entry.getValue(), target);
            }
        }
    }

    @Override
    public Map<K, V> deserialize(DataInputView source) throws IOException {
        final int size = source.readInt();

        final Map<K, V> map = new HashMap<>(size);
        for (int i = 0; i < size; ++i) {
            K key = keySerializer.deserialize(source);

            boolean isNull = source.readBoolean();
            V value = isNull ? null : valueSerializer.deserialize(source);

            map.put(key, value);
        }

        return map;
    }

    @Override
    public Map<K, V> deserialize(Map<K, V> reuse, DataInputView source) throws IOException {
        return deserialize(source);
    }

    @Override
    public void copy(DataInputView source, DataOutputView target) throws IOException {
        final int size = source.readInt();
        target.writeInt(size);

        for (int i = 0; i < size; ++i) {
            keySerializer.copy(source, target);

            boolean isNull = source.readBoolean();
            target.writeBoolean(isNull);

            if (!isNull) {
                valueSerializer.copy(source, target);
            }
        }
    }

    @Override
    public boolean equals(Object obj) {
        return obj == this
                || (obj != null
                        && obj.getClass() == getClass()
                        && keySerializer.equals(((MapSerializer<?, ?>) obj).getKeySerializer())
                        && valueSerializer.equals(
                                ((MapSerializer<?, ?>) obj).getValueSerializer()));
    }

    @Override
    public int hashCode() {
        return keySerializer.hashCode() * 31 + valueSerializer.hashCode();
    }

    // --------------------------------------------------------------------------------------------
    // Serializer configuration snapshotting
    // --------------------------------------------------------------------------------------------

    @Override
    public TypeSerializerSnapshot<Map<K, V>> snapshotConfiguration() {
        return new MapSerializerSnapshot<>(this);
    }
}

总结:

  • 序列化和反序列化本质上都是对MemorySegment的操作,通过DataOutputView写出二进制数据,通过DataInputView读入二进制数据;
  • 对于复合数据类型,也应嵌套定义并调用内部元素类型的TypeSerializer
  • 必须要有对应的TypeSerializerSnapshot。该组件定义了TypeSerializer本身及其所包含的元数据(即state schema)的序列化方式,这些信息会存储在快照中。可见,通过TypeSerializerSnapshot可以判断状态恢复时数据的兼容性,是Flink实现state schema evolution特性的关键所在。

TypeSerializerSnapshot

TypeSerializerSnapshot接口有以下几个重要的方法。注释写得很清晰,不再废话了(实际是因为懒而且累 = =

    /**
     * Returns the version of the current snapshot's written binary format.
     *
     * @return the version of the current snapshot's written binary format.
     */
    int getCurrentVersion();

    /**
     * Writes the serializer snapshot to the provided {@link DataOutputView}. The current version of
     * the written serializer snapshot's binary format is specified by the {@link
     * #getCurrentVersion()} method.
     *
     * @param out the {@link DataOutputView} to write the snapshot to.
     * @throws IOException Thrown if the snapshot data could not be written.
     * @see #writeVersionedSnapshot(DataOutputView, TypeSerializerSnapshot)
     */
    void writeSnapshot(DataOutputView out) throws IOException;

    /**
     * Reads the serializer snapshot from the provided {@link DataInputView}. The version of the
     * binary format that the serializer snapshot was written with is provided. This version can be
     * used to determine how the serializer snapshot should be read.
     *
     * @param readVersion version of the serializer snapshot's written binary format
     * @param in the {@link DataInputView} to read the snapshot from.
     * @param userCodeClassLoader the user code classloader
     * @throws IOException Thrown if the snapshot data could be read or parsed.
     * @see #readVersionedSnapshot(DataInputView, ClassLoader)
     */
    void readSnapshot(int readVersion, DataInputView in, ClassLoader userCodeClassLoader)
            throws IOException;

    /**
     * Recreates a serializer instance from this snapshot. The returned serializer can be safely
     * used to read data written by the prior serializer (i.e., the serializer that created this
     * snapshot).
     *
     * @return a serializer instance restored from this serializer snapshot.
     */
    TypeSerializer<T> restoreSerializer();

    /**
     * Checks a new serializer's compatibility to read data written by the prior serializer.
     *
     * <p>When a checkpoint/savepoint is restored, this method checks whether the serialization
     * format of the data in the checkpoint/savepoint is compatible for the format of the serializer
     * used by the program that restores the checkpoint/savepoint. The outcome can be that the
     * serialization format is compatible, that the program's serializer needs to reconfigure itself
     * (meaning to incorporate some information from the TypeSerializerSnapshot to be compatible),
     * that the format is outright incompatible, or that a migration needed. In the latter case, the
     * TypeSerializerSnapshot produces a serializer to deserialize the data, and the restoring
     * program's serializer re-serializes the data, thus converting the format during the restore
     * operation.
     *
     * @param newSerializer the new serializer to check.
     * @return the serializer compatibility result.
     */
    TypeSerializerSchemaCompatibility<T> resolveSchemaCompatibility(
            TypeSerializer<T> newSerializer);

特别注意,在状态恢复时,state schema的兼容性判断结果TypeSerializerSchemaCompatibility有4种:

  • COMPATIBLE_AS_IS:兼容,可以直接使用新Serializer;

  • COMPATIBLE_AFTER_MIGRATION:兼容,但需要用快照中的旧Serializer反序列化一遍数据,再将数据用新Serializer重新序列化。最常见的场景如状态POJO中增加或删除字段,详情可以参考PojoSerializerSnapshot类的相关代码;

  • COMPATIBLE_WITH_RECONFIGURED_SERIALIZER:兼容,但需要将新Serializer重新配置之后再使用。此类场景不太常见,举例如状态POJO的类继承关系发生变化;

  • INCOMPATIBLE:不兼容,无法恢复。例如,更改POJO中的一个简单类型字段的type(e.g. String → Integer),由于负责处理简单数据类型的SimpleTypeSerializerSnapshot不支持此类更改,就会抛出异常:

      @Override
      public TypeSerializerSchemaCompatibility<T> resolveSchemaCompatibility(
              TypeSerializer<T> newSerializer) {
    
          return newSerializer.getClass() == serializerSupplier.get().getClass()
                  ? TypeSerializerSchemaCompatibility.compatibleAsIs()
                  : TypeSerializerSchemaCompatibility.incompatible();
      }
    

显然,对于复合类型(如List、Map),需要先判断外部容器Serializer的兼容性,再判断嵌套Serializer的兼容性。详情可以参考Flink内部专门为此定义的CompositeTypeSerializerSnapshot抽象类,该类比较复杂,在此按下不表。

The End

在一些特殊的场景下,我们需要自定义Serializers来实现更好的状态序列化(例如用RoaringBitmap代替Set在状态中进行高效的去重),今天时间已经很晚,暂时不给出具体实现了。关于自定义状态序列化器的更多细节,请看官参见官方文档<<Custom Serialization for Managed State>>一章。

相关推荐
子非鱼@Itfuture3 小时前
Spark是什么?Flink和Spark区别
java·大数据·数据仓库·python·flink·spark
沐霜枫叶5 小时前
Flink CDC 自定义函数处理 SQLServer XML类型数据 映射 doris json字段方案
xml·sqlserver·flink·doris·cdc
JermeryBesian5 小时前
Flink源码解析之:Flink on k8s 客户端提交任务源码分析
大数据·flink·kubernetes
PersistJiao6 小时前
实时数仓:数据湖 + Flink当前实时数仓中非常主流且高效的方案之一
大数据·flink·实时数仓
州周6 小时前
Flink operator实现自动扩缩容
docker·flink·kubernetes
nsa652231 天前
Flink使用
大数据·flink
lisacumt2 天前
【flink-cdc】flink-cdc 3版本debug启动pipeline任务,mysql-doris
大数据·mysql·flink
小强签名设计2 天前
Flink DataSet API
大数据·flink
flying robot2 天前
Hadoop、Flink、Spark和Kafka
hadoop·flink·spark
武子康2 天前
大数据-269 实时数仓 - DIM DW ADS 层处理 Scala实现将数据写出HBase等
java·大数据·数据仓库·后端·flink·scala·hbase