一、何为SparkRPC
RPC全称为远程过程调用(Remote Procedure Call),它是一种计算机通信协议,允许一个计算机程序调用另一个计算机上的子程序,而无需了解底层网络细节。通过RPC,一个计算机程序可以像调用本地程序一样调用远程程序,使得分布式应用程序的开发更加简单和高效。
二、SparkRPC示意图

三、SparkRPC代码示例
1、基本流程
①启动Master和Worker
②Worker向Master发送**注册信息(封装成一个类:**RegisterWorker)
java
case class RegisterWorker(rpcEndpointRef:RpcEndpointRef,workerId:String,workerMemory:Int,workerCores:Int)
③Master收到Worker的注册信息,并将其存放到一个HashMap,其中Key为WorkerId,Value为**WorkerInfo,**其结构如下:
java
class WorkerInfo(val workerId:String,var workerMemory:Int,var workerCores:Int){
var lastHearBeatTime: Long = _
}
其中lastHearBeatTime是该Worker最后一次心跳时间。
④Master中启动一个定时任务(设定为每15s执行一次), 定时从HashMap 中获取各个Worker信息,并将其中的lastHearBeatTime与当前时间进行比较,如果大于10s,就认为该Worker已经与Master失联,将其从HashMap中剔除
⑤)(与④其实同步进行) Worker同样开启了一个定时任务(设定为每10s执行一次), 定时给Master发送心跳HeartBeat ; Master收到该心跳后,根据WorkerId从HashMap中取出对应的Worker信息,并将其lastHearBeatTime 修改为当前时间,从而不断更新与Master保持通信的Worker的最后心跳时间。
java
case class HeartBeat(WorkerId:String)
2、完整代码
(1)Master
java
package org.apache.spark.wakedata
import org.apache.spark.SparkConf
import org.apache.spark.SecurityManager
import org.apache.spark.rpc.{RpcCallContext, RpcEnv, ThreadSafeRpcEndpoint}
import java.util.concurrent.{Executors, TimeUnit}
import scala.collection.mutable
class Master(val rpcEnv:RpcEnv) extends ThreadSafeRpcEndpoint{
val idToWorker = new mutable.HashMap[String, WorkerInfo]()
override def onStart(): Unit = {
//启动一个定时器
val service = Executors.newScheduledThreadPool(1)
service.scheduleAtFixedRate(new Runnable {
override def run(): Unit = {
// 如果Worker最后一次心跳时间距离当前时间 大于10s,就需要移除该Worker
val deadWorkers = idToWorker.values.filter(w => System.currentTimeMillis() - w.lastHearBeatTime > 10000)
deadWorkers.foreach(w => {
idToWorker -= w.workerId
})
println(s"当前活跃的Worker数量:${idToWorker.size}")
}
},0,15,TimeUnit.SECONDS)
}
override def receive: PartialFunction[Any, Unit] = {
// case "test" => println("接收到了测试消息");
// println(s"Master收到了来自Worker的信息workerId:$workerId,workerMemory:$workerMemory,workerCores:$workerCores")
//给Worker发送异步消息
// rpcEndpointRef.send("response")
// 接收到Worker发送过来的注册消息
case RegisterWorker(rpcEndpointRef,workerId,workerMemory,workerCores) => {
//封装Worker传递过来的信息
val workerInfo = new WorkerInfo(workerId, workerMemory, workerCores)
idToWorker(workerId) = workerInfo
//向Worker返回一个注册成功的消息
rpcEndpointRef.send(RegisteredWorker)}
//接收到Worker发送过来的心跳信息
case HeartBeat(workerId) =>{
val workerInfo = idToWorker(workerId)
//更新最后一次访问时间
workerInfo.lastHearBeatTime = System.currentTimeMillis()
}
}
//接收同步消息
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
case "ask-msg" => {
println("接收到来自Worker的同步消息")
//Master响应Worker的请求:给Worker返回消息
context.reply("reply-msg")
}
}
}
object Master {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
//创建 SecurityManager(安全管理器,对系统资源的访问进行检查和限制)
val securityMgr = new SecurityManager(conf)
//创建rpcEnv,并指定名称、IP地址和端口等
val rpcEnv = RpcEnv.create("SparkMaster", "localhost", 8888, conf, securityMgr)
//创建Master RpcEndpoint
val master = new Master(rpcEnv)
//将Master的RpcEndpoint传入到setupEndpoint,并指定名称,返回一个RpcEndpoint的引用,
val masterEndpoint = rpcEnv.setupEndpoint("master", master)
//通过RpcEndpoint的引用发送消息
// masterEndpoint.send("test")
//将程序挂起,等待退出
rpcEnv.awaitTermination()
}
}
(2)Worker
java
package org.apache.spark.wakedata
import org.apache.spark.SparkConf
import org.apache.spark.SecurityManager
import org.apache.spark.rpc.{RpcAddress, RpcEndpointRef, RpcEnv, ThreadSafeRpcEndpoint}
import java.util.concurrent.{Executors, TimeUnit}
import scala.concurrent.ExecutionContext.Implicits.global
class Worker(val rpcEnv:RpcEnv) extends ThreadSafeRpcEndpoint{
var masterEndpointRef:RpcEndpointRef = _
val WORKER_ID = "worker02"
override def onStart(): Unit = {
//向Master发送请求连接(本质上是连接master的endPoint)
masterEndpointRef = rpcEnv.setupEndpointRef(RpcAddress("localhost", 8888), "master")
//向Master发送注册Worker的请求(注意这里发送的是同步消息,底层使用的是ask方法.为何是同步发送? 因为必须首先建立好连接,然后才能发送消息)
//其中self是worker RpcEndpoint的引用
masterEndpointRef.send(RegisterWorker(self,WORKER_ID,1000,8))
}
//接收异步消息
override def receive: PartialFunction[Any, Unit] = {
// case "response" => {
// println("Worker接收到Master返回的消息")
// //向Master发送同步消息
// val future = masterEndpointRef.ask[String]("ask-msg")
// //接收Master返回的消息
// future.map(res => println(s"Worker接收到Master返回的响应请求消息:$res"))
// }
//Worker接收到Master发送过来的异步消息
case RegisteredWorker => {
//启动一个定时器
val service = Executors.newScheduledThreadPool(1)
service.scheduleAtFixedRate(
new Runnable {
override def run(): Unit = {
masterEndpointRef.send(HeartBeat(WORKER_ID))
}
},0,10,TimeUnit.SECONDS)
}
}
}
object Worker {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
val SecurityMgr = new SecurityManager(conf)
//创建rpcEnv
val rpcEnv = RpcEnv.create("SparkWorker", "localhost", 9998, conf,SecurityMgr)
//创建rpcendpoint
val worker = new Worker(rpcEnv)
//返回一个RpcEndpoint的引用
val workerEndpoint = rpcEnv.setupEndpoint("Worker", worker)
rpcEnv.awaitTermination()
}
}
(3)RegisterWorker-样例类和伴生对象
此类封装Worker注册信息
java
package org.apache.spark.wakedata
import org.apache.spark.rpc.RpcEndpointRef
case class RegisterWorker(rpcEndpointRef:RpcEndpointRef,workerId:String,workerMemory:Int,workerCores:Int)
java
package org.apache.spark.wakedata
case object RegisteredWorker
(4)WorkerInfo
java
package org.apache.spark.wakedata
class WorkerInfo(val workerId:String,var workerMemory:Int,var workerCores:Int){
var lastHearBeatTime: Long = _
}
package org.apache.spark.wakedata
class WorkerInfo(val workerId:String,var workerMemory:Int,var workerCores:Int){
var lastHearBeatTime: Long = _
}
package org.apache.spark.wakedata
class WorkerInfo(val workerId:String,var workerMemory:Int,var workerCores:Int){
var lastHearBeatTime: Long = _
}
3、关于SparkRPC的一些细节
1、接收异步消息是在receive方法
2、接收同步消息是在receiveAndReply
java
//接收同步消息
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
case "ask-msg" => {
println("接收到来自Worker的同步消息")
//Master响应Worker的请求:给Worker返回消息
context.reply("reply-msg")
}
}
}
3、发送同步消息使用ask
java
// //向Master发送同步消息
// val future = masterEndpointRef.ask[String]("ask-msg")