超快的 AI 实时语音转文字,比 OpenAI 的 Whisper 快4倍 -- 开源项目 Faster Whisper

faster-whisper 这个项目是基于 OpenAI whisper 的模型,在上面的一个重写。

使用的是 CTranslate2 的这样的一个库,CTranslate2 是用于 Transformer 模型的一个快速推理引擎。

在相同精度的情况下,faster-whisper 的速度比 OpenAI whisper 快 4 倍,并且使用更少的内存。

这是 faster-whisper 与 OpenAI whisper 的测试对比结果,使用了一个13分钟的音频做的测试。

OpenAI whisper 用了4分30秒,faster-whisper 只用了54秒。

并且,faster-whisper 使用的 CPU 和 GPU 都只有 OpenAI whisper 的三分之一左右。

性能大幅提升,资源占用大幅降低,就是马跑的更快了,吃的更少了。

感紧跑起来试试。

本地安装运行

faster-whisper 需要 Python 3.8 之后的版本,可以创建Python虚拟环境来实现。

安装 faster-whisper :

pip install faster-whisper

Python代码:

from faster_whisper import WhisperModel

# 指定模型
model_size = "large-v3"

# or run on CPU with INT8
model = WhisperModel(model_size, device="cpu", compute_type="int8")

# 加载音频,执行语音识别
segments, info = model.transcribe("Haul.mp3", beam_size=5)

print("Detected language '%s' with probability %f" % (info.language, info.language_probability))

for segment in segments:
    print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))

第一次执行时,会自动加载模型。

然后开始识别,输出识别结果。

以上是在 CPU 上的运行过程,如果想要更好的运行效率,自然是在 GPU 上跑。

使用 GPU,需要安装一些辅助。

以 N 卡为例,先安装 NVIDIA 相关的东西。

打开网页:

developer.nvidia.com/cudnn

下载安装。

打开网页:

developer.nvidia.com/cuda-downloads

下载安装。

安装完成后,打开安装目录,例如我的是:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin

找到其中的文件 cublas64_12.dll,复制一份,改名为 cublas64_11.dll

打开网页:

github.com/Purfview/whisper-standalone-win/releases/tag/libs

下载解压,根据提示放入相应位置。

安装依赖库:

pip install nvidia-cublas-cu11 nvidia-cudnn-cu11

然后就可以使用 GPU 运行了。

Python 代码:

from faster_whisper import WhisperModel

model_size = "large-v3"

# 使用 GPU 运行,指定精度 INT8
model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")

# 加载音频并执行识别
segments, info = model.transcribe("Haul.mp3", beam_size=5)

print("Detected language '%s' with probability %f" % (info.language, info.language_probability))

for segment in segments:
    print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))

怎么样,感觉不错吧,有兴趣的话,快试试吧。

项目地址:

github.com/SYSTRAN/faster-whisper

#AI 人工智能,#OpenAI whisper, #fast-whisper,#ChatGPT,#语音转文字,#gpt890

信息来源 gpt890.com/article/35

相关推荐
tzc_fly2 小时前
使用机器学习在单细胞水平识别肿瘤细胞
人工智能·机器学习
IT古董2 小时前
【漫话机器学习系列】021.类别特征(Categorical Feature)
人工智能·机器学习
湫ccc2 小时前
《机器学习》数据预处理简介
人工智能·机器学习
机器懒得学习3 小时前
打造智能化恶意软件检测桌面系统:从数据分析到一键报告生成
人工智能·python·算法·数据挖掘
szpc16213 小时前
100V宽压输入反激隔离电源,适用于N道沟MOSFET或GaN或5V栅极驱动器,无需光耦合
c语言·开发语言·人工智能·单片机·嵌入式硬件·生成对抗网络·fpga开发
weixin_543662863 小时前
伏羲0.13(文生图)
人工智能·深度学习
985小水博一枚呀3 小时前
【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征的?附代码
大数据·网络·人工智能·深度学习·神经网络·cnn
itwangyang5204 小时前
AIDD - 人工智能药物设计 -使用 Butina 模块对相似化合物进行聚类
人工智能·数据挖掘·聚类
Gui林4 小时前
RoboMIND:多体现基准 机器人操纵的智能规范数据
人工智能·ai·机器人
jionghan38555 小时前
理想的未来在AI——李想深度解析理想汽车的智能化之路
人工智能·汽车