教程2_图像的合并及融合

1、图像加法

您可以通过OpenCV函数 cv.add() 或仅通过 numpy 操作 res = img1 + img2 添加两个图像。两个图像应具有相同的深度和类型,或者第二个图像可以只是一个标量值。

注意: OpenCV加法和Numpy加法之间有区别。OpenCV加法是饱和运算,而Numpy加法是模运算。

例如,考虑以下示例:

>>> x = np.uint8([250])
>>> y = np.uint8([10])
>>> print( cv.add(x,y) ) # 250+10 = 260 => 255
[[255]]
>>> print( x+y )          # 250+10 = 260 % 256 = 4
[4]

2、图像融合

这也是图像加法,但是对图像赋予不同的权重,以使其具有融合或透明的感觉。根据以下等式添加图像:

G(x) = (1−α)f0(x)+αf1(x)G(x) = (1−α)f0(x)+αf1(x)

通过从 αα 从 0→10→1 更改,您可以在一个图像到另一个图像之间执行很酷的过渡。

在这里有两个图像,将它们融合在一起。第一幅图像的权重为0.7,第二幅图像的权重为0.3。**cv.addWeighted() **在图像上应用以下公式:

dst = α⋅img1+β⋅img2+γdst = α⋅img1+β⋅img2+γ

在这里,γ 被视为0。

import cv2 as cv

img1 = cv.imread('img1.png')
img2 = cv.imread('opencv_logo.png')
dst = cv.addWeighted(img1,0.7,img2,0.3,0)
cv.imshow('dst',dst)
cv.waitKey(0)
cv.destroyAllWindows()

检查以下结果:

3、按位运算

这包括按位 ANDORNOTXOR 操作。下面我们将看到一个例子,如何改变一个图像的特定区域。 我想在图像上方放置OpenCV徽标。如果添加两个图像,它将改变颜色。如果混合它,我将获得透明效果。但我希望它不透明。因此,您可以按如下所示进行按位操作:

python 复制代码
# 导入OpenCV库,并给它一个简短的别名cv  
import cv2 as cv  
  
# 使用cv.imread方法加载两张图片,分别为'4.png'和'opencv_logo.png'  
# 将加载的图片分别存储在变量img1和img2中  
img1 = cv.imread('4.png')  
img2 = cv.imread('opencv_logo.png')  
  
# 获取logo图片(img2)的尺寸信息,即行数、列数和通道数  
# 将这些信息分别存储在变量rows, cols, channels中  
rows,cols,channels = img2.shape  
  
# 创建一个ROI(感兴趣区域),大小为logo图片的尺寸,位置为img1的左上角  
# 这里roi变量实际上是img1的左上角区域的一个视图,没有实际复制数据  
roi = img1[0:rows, 0:cols]  
  
# 将logo图片(img2)转换为灰度图像  
img2gray = cv.cvtColor(img2,cv.COLOR_BGR2GRAY)  
  
# 使用cv.threshold方法对灰度图像进行二值化处理  
# 设定阈值为10,当像素值大于或等于10时,设为255,否则为0  
# 使用cv.THRESH_BINARY作为阈值类型  
# 返回值ret为使用的实际阈值(在此处可能为10),mask为二值化后的掩码图像  
ret, mask = cv.threshold(img2gray, 10, 255, cv.THRESH_BINARY)  
  
# 对掩码图像进行位运算的"非"操作,得到其相反掩码  
# 原本为白色的logo区域在mask_inv中变为黑色,原本为黑色的背景在mask_inv中变为白色  
mask_inv = cv.bitwise_not(mask)  
  
# 使用位运算的"与"操作,将ROI中logo的区域涂黑  
# 因为mask_inv中logo区域是黑色,所以该操作实际上保留了ROI中的原背景  
img1_bg = cv.bitwise_and(roi,roi,mask = mask_inv)  
  
# 使用位运算的"与"操作,仅从logo图像中提取logo区域  
# 因为mask中logo区域是白色,所以该操作提取了logo的实际内容  
img2_fg = cv.bitwise_and(img2,img2,mask = mask)  
  
# 将提取的logo内容添加到之前处理过的ROI背景上  
# 使用cv.add方法将两者合并  
dst = cv.add(img1_bg,img2_fg)  
  
# 将合并后的图像放回原img1的对应位置,即左上角  
img1[0:rows, 0:cols] = dst  
  
# 显示处理后的图像  
cv.imshow('res',img1)  
  
# 等待用户按键,参数0表示无限等待  
cv.waitKey(0)  
  
# 销毁所有OpenCV窗口  
cv.destroyAllWindows()

检查以下结果:

相关推荐
云空15 分钟前
《Python 与 SQLite:强大的数据库组合》
数据库·python·sqlite
凤枭香1 小时前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
测试杂货铺1 小时前
外包干了2年,快要废了。。
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
小码的头发丝、2 小时前
Django中ListView 和 DetailView类的区别
数据库·python·django
Chef_Chen2 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习
千澜空3 小时前
celery在django项目中实现并发任务和定时任务
python·django·celery·定时任务·异步任务
斯凯利.瑞恩3 小时前
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户附数据代码
python·决策树·随机森林
yannan201903133 小时前
【算法】(Python)动态规划
python·算法·动态规划
蒙娜丽宁3 小时前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉