Diffuison在域自适应中 笔记

1 Title

Diffusion-based Target Sampler for Unsupervised Domain Adaptation(Zhang, Yulong, Chen, Shuhao, Zhang, Yu, Lu, Jiang)【CVPR 2023】

2 Conclusion

large domain shifts and the sample scarcity in the target domain make existing UDA methods achieve suboptimal performance. To alleviate these issues, This study propose a plug-andplay Diffusion-based Target Sampler (DTS) to generate high fidelity and diversity pseudo target samples. By introducing class-conditional information, the labels of the generated target samples can be controlled.

3 Good Sentences

1、Compared with those methods that generate an intermediate domain to interpolate

between the distributions of the source and target domains, the proposed DTS framework directly generates pseudo target samples that obey the target distribution. Instead of using adversarial training strategies, the proposed DTS framework is based on the DPM, which has better generation capabilities and is easier to converge in the training process(The advantages of Diffusion model when compared with other )

2、Although DPM has obtained superior performance in image generation, it still has the problem of slow sampling speed due to thousands of denoising steps required to generate a sample of high quality, which greatly hinders the application of DPM.(The shortcomings of DPM when try to apply)

3、Different from those GAN-based methods, the proposed diffusion-based DTS framework directly generates pseudo target samples that could obey the target distribution without adversarial training. [25] has shown that DPMs are better at covering the modes of a distribution than GANs, which well meets the needs of target data generation here. And the category and the number of samples generated can be flexibly controlled.(The innovation of this paper when compared with others)


本文提出了一种基于即插即用扩散的目标采样器(DTS)来生成高保真度和多样性的伪目标样本来解决无监督域适应(UDA)中大型域偏移和目标域中的样本稀缺的问题。具体来说,DTS是生成可以遵循目标分布的伪目标样本。这样,可以用伪目标样本来增强目标样本,从而提高UDA模型的性能。DTS将生成的目标样本和原始源样本组合为增广源域,其中使用原始源样本来抑制生成目标样本的噪声标签的影响。通过这种方式,增强源域的分布更接近目标域,这降低了域自适应(DA)的难度。请注意,所提出的DTS框架是一个即插即用模块,可以嵌入到任何现有的UDA方法中,以提高其传输性能。

如图所示,整个DTS框架分为以上三个步骤,步骤1:通过一些UDA方法获得分类器,步骤2:由步骤1中预训练的分类器分配目标样本的伪标签,并使用具有伪标签的目标样本来训练CDPM。步骤3:采用预训练的CDPM来生成目标样本,并将这些生成的目标样本与原始源样本组合作为增广源域

作为一个即插即用模块,插进去了之后还是有所提升的

相关推荐
TL滕6 分钟前
从0开始学算法——第一天(认识算法)
数据结构·笔记·学习·算法
YuforiaCode13 分钟前
神领物流v2.0-day3-运费微服务笔记(个人记录、含练习答案、仅供参考)
笔记
zhangrelay1 小时前
如何使用AI快速编程实现标注ROS2中sensor_msgs/msg/Image图像色彩webots2025a
人工智能·笔记·opencv·学习·计算机视觉·机器人视觉
m0_598250001 小时前
电源完整性07-如何确定PDN网络中的大电容
笔记·单片机·嵌入式硬件·硬件工程
摇滚侠2 小时前
Spring Boot3零基础教程,Reactive-Stream 规范核心接口,笔记103
java·spring boot·笔记
!!!!!!!!!!!!!!!!.3 小时前
CTF WEB入门 命令执行篇29-49
笔记·安全
bnsarocket4 小时前
Verilog和FPGA的自学笔记8——按键消抖与模块化设计
笔记·fpga开发·verilog·自学·硬件编程
TL滕5 小时前
从0开始学算法——第一天(如何高效学习算法)
数据结构·笔记·学习·算法
仰望—星空5 小时前
MiniEngine学习笔记 : CommandAllocatorPool
笔记·学习
朝新_6 小时前
【SpringBoot】玩转 Spring Boot 日志:级别划分、持久化、格式配置及 Lombok 简化使用
java·spring boot·笔记·后端·spring·javaee