0202矩阵的运算-矩阵及其运算-线性代数

文章目录

一、矩阵的加法

定义2 设有两个 m × n m\times n m×n橘子 A = ( a i j ) 和 B = ( b i j ) A=(a_{ij})和B=(b_{ij}) A=(aij)和B=(bij),那么矩阵A与B的和记为A+B,规定为
A + B = ( a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 + b 21 a 22 + b 22 ⋯ a 2 n + b 2 n ⋮ ⋮ ⋮ a m 1 + b m 1 a m 2 + b m 2 ⋯ a m n + b m n ) A+B=\begin{pmatrix} a_{11}+b_{11}&a_{12}+b_{12}&\cdots&a_{1n}+b_{1n}\\ a_{21}+b_{21}&a_{22}+b_{22}&\cdots&a_{2n}+b_{2n}\\ \vdots&\vdots&&\vdots\\ a_{m1}+b_{m1}&a_{m2}+b_{m2}&\cdots&a_{mn}+b_{mn}\\ \end{pmatrix} A+B= a11+b11a21+b21⋮am1+bm1a12+b12a22+b22⋮am2+bm2⋯⋯⋯a1n+b1na2n+b2n⋮amn+bmn

**tips:**只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算。

矩阵加法满足下列运算规律(设A,B,C都是 m × n m\times n m×n矩阵):

  • A + B = B + A A+B=B+A A+B=B+A
  • ( A + B ) + C = A + ( B + C ) (A+B)+C=A+(B+C) (A+B)+C=A+(B+C)

设矩阵 A = ( a i j ) A=(a_{ij}) A=(aij),记

− A = ( − a i j ) -A=(-a_{ij}) −A=(−aij)

-A称为矩阵A的负矩阵,显示有

A + ( − A ) = O A+(-A)=O A+(−A)=O

矩阵的减法为

A − B = A + ( − B ) A-B=A+(-B) A−B=A+(−B)

二、数与矩阵相乘

定义3 数 λ \lambda λ与矩阵A的乘积记作 λ A 或 A λ \lambda A或A\lambda λA或Aλ,规定为
λ A = A λ = ( λ a 11 λ a 12 ⋯ λ a 1 n λ a 21 λ a 22 ⋯ λ a 2 n ⋮ ⋮ ⋮ λ a m 1 λ a m 2 ⋯ λ a m n ) \lambda A=A\lambda=\begin{pmatrix} \lambda a_{11}&\lambda a_{12}&\cdots&\lambda a_{1n}\\ \lambda a_{21}&\lambda a_{22}&\cdots&\lambda a_{2n}\\ \vdots&\vdots&&\vdots\\ \lambda a_{m1}&\lambda a_{m2}&\cdots&\lambda a_{mn}\\ \end{pmatrix} λA=Aλ= λa11λa21⋮λam1λa12λa22⋮λam2⋯⋯⋯λa1nλa2n⋮λamn

数乘矩阵满足下列运算规律(设A、B为 m × n m\times n m×n矩阵, λ 、 μ \lambda、\mu λ、μ为数):

  • ( λ μ ) A = λ ( μ A ) (\lambda\mu)A=\lambda(\mu A) (λμ)A=λ(μA)
  • ( λ + μ ) A = λ A + μ A (\lambda+\mu)A=\lambda A+\mu A (λ+μ)A=λA+μA
  • λ ( A + B ) = λ A + λ B \lambda(A+B)=\lambda A+\lambda B λ(A+B)=λA+λB

矩阵加法和数乘矩阵统称为矩阵的线性运算。

三、矩阵与矩阵相乘

定义4 设 A = ( a i j ) 是一个 m × s A=(a_{ij})是一个m\times s A=(aij)是一个m×s的矩阵, B = ( b i j ) 是一个 s × n B=(b_{ij})是一个s\times n B=(bij)是一个s×n的矩阵,那么规定矩阵A与矩阵B的乘积是一个 m × n m\times n m×n矩阵 C = ( c i j ) C=(c_{ij}) C=(cij),其中

c i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i s b s j = ∑ k = 1 n a i k b j k , ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{is}b_{sj}=\sum_{k=1}^na_{ik}b_{jk},(i=1,2,\cdots,m;j=1,2,\cdots,n) cij=ai1b1j+ai2b2j+⋯+aisbsj=∑k=1naikbjk,(i=1,2,⋯,m;j=1,2,⋯,n)

并把此乘积记作

C = A B C=AB C=AB

说明:

  • 乘积矩阵 A B = C 的 ( i , j ) 元 c i j AB=C的(i,j)元c_{ij} AB=C的(i,j)元cij就是A的第 i i i行和B的第 j j j列的乘积。
  • 只有当第一个矩阵的(左矩阵)的列数等于第二个矩阵的(右矩阵)的行数时,两个矩阵才能相乘。

例5 求矩阵
A = ( 4 − 1 2 1 1 1 0 3 0 3 1 4 ) 与 B = ( 1 2 0 1 3 0 − 1 2 ) A=\begin{pmatrix} 4&-1&2&1\\ 1&1&0&3\\ 0&3&1&4\\ \end{pmatrix} 与B=\begin{pmatrix} 1&2\\ 0&1\\ 3&0\\ -1&2\\ \end{pmatrix} A= 410−113201134 与B= 103−12102

的乘积
C = A B = ( 4 + 0 + 6 − 1 8 − 1 + 0 + 2 1 + 0 + 0 − 3 2 + 1 + 0 + 6 0 + 0 + 3 − 4 0 + 3 + 0 + 8 ) = C = A B = ( 9 9 − 2 9 − 1 11 ) C=AB=\begin{pmatrix} 4+0+6-1&8-1+0+2\\ 1+0+0-3&2+1+0+6\\ 0+0+3-4&0+3+0+8\\ \end{pmatrix}\\ =C=AB=\begin{pmatrix} 9&9\\ -2&9\\ -1&11\\ \end{pmatrix} C=AB= 4+0+6−11+0+0−30+0+3−48−1+0+22+1+0+60+3+0+8 =C=AB= 9−2−19911

例6 求矩阵
A = ( − 2 4 1 − 2 ) 与 B = ( 2 4 − 3 − 6 ) A=\begin{pmatrix} -2&4\\ 1&-2 \end{pmatrix} 与B=\begin{pmatrix} 2&4\\ -3&-6 \end{pmatrix} A=(−214−2)与B=(2−34−6)

的乘积AB级BA
A B = ( − 16 − 32 8 16 ) B A = ( 0 0 0 0 ) AB=\begin{pmatrix} -16&-32\\ 8&16\\ \end{pmatrix}\\ BA=\begin{pmatrix} 0&0\\ 0&0\\ \end{pmatrix}\\ AB=(−168−3216)BA=(0000)
tips:

  • A B AB AB有意思,但是 B A BA BA不一定有意义;若 B A BA BA有意义,但AB与BA不一定相等。
  • 对于n阶方阵A、B,若AB=BA,则称方阵A与B可交换。
  • 若两个矩阵A、B满足 A B = O AB=O AB=O,不能得出 A = O 或 B = O A=O或B=O A=O或B=O;若 A ≠ O A\not=O A=O而 A ( X − Y ) = O A(X-Y)=O A(X−Y)=O,不能得出 X = Y X=Y X=Y的结论。

矩阵的乘法虽不满足交换律,但仍满足下列结合律和分配律(假设运算都是可行的):

  • ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
  • λ ( A B ) = ( λ A ) B = A ( λ B ) \lambda(AB)=(\lambda A)B=A(\lambda B) λ(AB)=(λA)B=A(λB)
  • A ( B + C ) = A B + A C , ( B + C ) A = B A + C A A(B+C)=AB+AC,(B+C)A=BA+CA A(B+C)=AB+AC,(B+C)A=BA+CA

对于单位矩阵E,容易验证

E M A m × n = A m × n , A m × n E n = A m × n E_MA_{m\times n}=A_{m\times n},A_{m\times n}E_n=A_{m\times n} EMAm×n=Am×n,Am×nEn=Am×n

或简写EA=AE=A

矩阵
( λ λ ⋱ λ ) \begin{pmatrix} \lambda&&&\\ &\lambda&&\\ &&\ddots&\\ &&&\lambda\\ \end{pmatrix} λλ⋱λ

称为纯量阵。由 ( λ E ) A = λ A , A ( λ E ) = λ A (\lambda E)A=\lambda A,A(\lambda E)=\lambda A (λE)A=λA,A(λE)=λA,可知纯量阵 λ E 与矩阵 A \lambda E与矩阵A λE与矩阵A的乘积等于数 λ \lambda λ与A的乘积,当A位n阶方阵时,有

( λ E ) A n = λ A n = A n ( λ E ) (\lambda E)A_n=\lambda A_n=A_n(\lambda E) (λE)An=λAn=An(λE)

表名纯量阵 λ E \lambda E λE与任何同阶方阵都是可交换的。

矩阵的幂:设A是n阶方阵,定义 A 1 = A , A 2 = A 1 A 1 , ⋯   , A k + 1 = A k A 1 A^1=A,A^2=A^1A^1,\cdots,A^{k+1}=A^kA^1 A1=A,A2=A1A1,⋯,Ak+1=AkA1

其中 k k k为正整数。

矩阵的幂满足以下运算规律

  • A K A l = A k + l , ( A k ) l = A k l A^KA^l=A^{k+l},(A^k)^l=A^{kl} AKAl=Ak+l,(Ak)l=Akl

矩阵A与B可交换时,满足下列运算规律

  • ( A B ) k = A k B k (AB)^k=A^kB^k (AB)k=AkBk
  • ( A + B ) 2 = A 2 + 2 A B + B 2 (A+B)^2=A^2+2AB+B^2 (A+B)2=A2+2AB+B2
  • ( A + B ) ( A − B ) = A 2 − B 2 (A+B)(A-B)=A^2-B^2 (A+B)(A−B)=A2−B2

例7 上阶例1中n元线性方程组(1)
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 1 , ⋯ ⋯ ⋯ a m x 1 + a m 2 x 2 + ⋯ + a m n x n = b 1 , \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_1,\\ \cdots\cdots\cdots\\ a_{m}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_1,\\ \end{cases} ⎩ ⎨ ⎧a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b1,⋯⋯⋯amx1+am2x2+⋯+amnxn=b1,

利用矩阵乘法可写成矩阵形式

A m × n x n × 1 = b m × 1 A_{m\times n}x_{n\times 1}=b_{m\times 1} Am×nxn×1=bm×1

其中 A = ( a i j ) A=(a_{ij}) A=(aij)为系数矩阵, x = ( x 1 x 2 ⋮ x n ) x=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix} x= x1x2⋮xn 为未知数矩阵, b = ( b 1 b 2 ⋮ b m ) b=\begin{pmatrix}b_1\\b_2\\\vdots\\b_m\end{pmatrix} b= b1b2⋮bm 为常数项矩阵。特别当b=O时,得到吗哥方程的n元齐次线性方程组的矩阵形式

A m × n x n × 1 = 0 m × 1 A_{m\times n}x_{n\times 1}=0_{m\times 1} Am×nxn×1=0m×1

四、矩阵的转置

定义5 把矩阵A的行换成同序列的列得到一个新的矩阵,叫做A的转置矩阵,记作 A T A^T AT.

矩阵的转置也是一种运算,满足下列运算过滤(假设运算都是可行的):

  • ( A T ) T = A (A^T)^T=A (AT)T=A
  • ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
  • ( λ A ) T = λ A T (\lambda A)^T=\lambda A^T (λA)T=λAT
  • ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

例8 已知
A = ( 2 0 − 1 1 3 2 ) , B = ( 1 7 − 1 4 2 3 2 0 1 ) A=\begin{pmatrix} 2&0&-1\\ 1&3&2\\ \end{pmatrix} ,B=\begin{pmatrix} 1&7&-1\\ 4&2&3\\ 2&0&1\\ \end{pmatrix}\\ A=(2103−12),B= 142720−131

求 ( A B ) T (AB)^T (AB)T
A B = A = ( 0 14 − 3 17 13 10 ) ( A B ) T = ( 0 17 14 13 − 3 10 ) AB=A=\begin{pmatrix} 0&14&-3\\ 17&13&10\\ \end{pmatrix}\\ (AB)^T=\begin{pmatrix} 0&17\\ 14&13\\ -3&10\\ \end{pmatrix} AB=A=(0171413−310)(AB)T= 014−3171310

五、方阵的行列式

定义6 有n阶方阵A的元素所构成的行列式(各元素的位置不变),称为方程A的行列式,记作 d e t A 或者 ∣ A ∣ det A或者\vert A\vert detA或者∣A∣

有A确定 ∣ A ∣ \vert A\vert ∣A∣的这个运算满足下述运算规律(设A、B位n阶方阵,\\lambda 为数:

  1. ∣ A T ∣ = ∣ A ∣ \vert A^T\vert = \vert A\vert ∣AT∣=∣A∣
  2. ∣ λ A ∣ = λ n ∣ A ∣ |\lambda A\vert = \lambda^n \vert A\vert ∣λA∣=λn∣A∣
  3. ∣ A B ∣ = ∣ A ∣ ∣ B ∣ \vert AB\vert = \vert A\vert \vert B\vert ∣AB∣=∣A∣∣B∣

伴随矩阵:

行列式 ∣ A ∣ \vert A\vert ∣A∣的各个元素的代数余子式 A i j A_{ij} Aij所构成的如下的矩阵
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ) A^*=\begin{pmatrix} A_{11}&A_{21}&\cdots&A_{n1}\\ A_{12}&A_{22}&\cdots&A_{n2}\\ \vdots&\vdots&&\vdots\\ A_{1n}&A_{2n}&\cdots&A_{nn}\\ \end{pmatrix} A∗= A11A12⋮A1nA21A22⋮A2n⋯⋯⋯An1An2⋮Ann

称为矩阵A的伴随矩阵,简称伴随阵。

A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=\vert A\vert E AA∗=A∗A=∣A∣E

结语

❓QQ:806797785

⭐️文档笔记地址 https://github.com/gaogzhen/math

参考:

1\]同济大学数学系.工程数学.线性代数 第6版 \[M\].北京:高等教育出版社,2014.6.p29-39. \[2\][同济六版《线性代数》全程教学视频](https://www.bilibili.com/video/BV1864y1T7Ks)\[CP/OL\].2020-02-07.p9.

相关推荐
X-future4261 天前
院校机试刷题第六天:1134矩阵翻转、1052学生成绩管理、1409对称矩阵
线性代数·算法·矩阵
九州ip动态2 天前
自媒体工作室如何矩阵?自媒体矩阵养号策略
线性代数·矩阵·媒体
田梓燊2 天前
数学复习笔记 19
笔记·线性代数·机器学习
田梓燊2 天前
数学复习笔记 12
笔记·线性代数·机器学习
jerry6093 天前
LLM笔记(六)线性代数
笔记·学习·线性代数·自然语言处理
田梓燊3 天前
数学复习笔记 14
笔记·线性代数·矩阵
田梓燊3 天前
数学复习笔记 15
笔记·线性代数·机器学习
Magnum Lehar4 天前
3d游戏引擎的math矩阵实现
线性代数·矩阵·游戏引擎
HappyAcmen4 天前
线代第二章矩阵第九、十节:初等变换、矩阵的标准形、阶梯形与行最简阶梯形、初等矩阵
笔记·学习·线性代数·矩阵
人类发明了工具4 天前
【优化算法】协方差矩阵自适应进化策略(Covariance Matrix Adaptation Evolution Strategy,CMA-ES)
线性代数·算法·矩阵·cma-es