RAG进阶笔记:RAG进阶

1 查询/索引部分

1.1 层次索引

  • 创建两个索引------一个由摘要组成,另一个由文档块组成
  • 分两步进行搜索:首先通过摘要过滤出相关文档,接着只在这个相关群体内进行搜索

1.2 假设性问题

  • 让LLM为每个块生成一个假设性问题,并将这些问题以向量形式嵌入
  • 在运行时,针对这个问题向量的索引进行查询搜索(用问题向量替换文档的块向量)
  • 检索后将原始文本块作为上下文发送给LLM以获取答案
  • 这种方法由于查询和假设性问题之间的语义相似性更高,从而提高了搜索质量

1.3 句子窗口检索

  • 文档中的每个句子都被单独嵌入向量
  • 在检索到的关键句子前后各扩展k个句子,然后将这个扩展的上下文发送给LLM

1.4 父文档检索器(自动合并检索器)

  • 文档被分割成一个层级化的块结构,随后用最小的叶子块进行索引
  • 在检索过程中检索出top k个叶子块
  • 如果存在n个叶子块都指向同一个更大的父块,那么我们就用这个父块来替换这些子块,并将其送入大模型用于生成答案。

1.4 查询扩展

1.4.1 使用生成的答案进行查询扩展

Precise Zero-Shot Dense Retrieval without Relevance Labels

  • 给定输入查询后,这种方法首先会指示 LLM 提供一个假设答案,无论其正确性如何
  • 然后,将查询和生成的答案合并在一个提示中,并发送给检索系统
    • 基本目的是希望检索到更像答案的文档。
    • 假设答案的正确性并不重要,因为感兴趣的是它的结构和表述

1.3.2 用多个相关问题扩展查询

Query Expansion by Prompting Large Language Models

  • 利用 LLM 生成 N 个与原始查询相关的问题
  • 将所有问题(加上原始查询)发送给检索系统。
  • 通过这种方法,可以从向量库中检索到更多文档。

参考内容:

提升RAG检索质量的三个高级技巧(查询扩展、交叉编码器重排序和嵌入适配器)

相关推荐
宵时待雨24 分钟前
STM32笔记归纳7:EXTI
笔记·stm32·单片机·嵌入式硬件
星夜泊客42 分钟前
C# 基础:为什么类可以在静态方法中创建自己的实例?
开发语言·经验分享·笔记·unity·c#·游戏引擎
im_AMBER2 小时前
Leetcode 111 两数相加
javascript·笔记·学习·算法·leetcode
驭渊的小故事2 小时前
类和对象的笔记3
笔记
四谎真好看2 小时前
JavaWeb学习笔记(Day12)
笔记·学习·学习笔记·javaweb
妄汐霜4 小时前
小白学习笔记(javaweb前端三大件)
笔记·学习·web
tb_first4 小时前
万字超详细苍穹外卖学习笔记5
java·数据库·spring boot·笔记·学习·spring
山岚的运维笔记4 小时前
SQL Server笔记 -- 第16章:MERGE
java·笔记·sql·microsoft·sqlserver
童话名剑5 小时前
语音识别 与 触发词检测(吴恩达深度学习笔记)
笔记·深度学习·语音识别·触发词检测
一起养小猫5 小时前
Flutter for OpenHarmony 进阶:Timer组件与倒计时系统深度解析
android·网络·笔记·flutter·json·harmonyos