RAG进阶笔记:RAG进阶

1 查询/索引部分

1.1 层次索引

  • 创建两个索引------一个由摘要组成,另一个由文档块组成
  • 分两步进行搜索:首先通过摘要过滤出相关文档,接着只在这个相关群体内进行搜索

1.2 假设性问题

  • 让LLM为每个块生成一个假设性问题,并将这些问题以向量形式嵌入
  • 在运行时,针对这个问题向量的索引进行查询搜索(用问题向量替换文档的块向量)
  • 检索后将原始文本块作为上下文发送给LLM以获取答案
  • 这种方法由于查询和假设性问题之间的语义相似性更高,从而提高了搜索质量

1.3 句子窗口检索

  • 文档中的每个句子都被单独嵌入向量
  • 在检索到的关键句子前后各扩展k个句子,然后将这个扩展的上下文发送给LLM

1.4 父文档检索器(自动合并检索器)

  • 文档被分割成一个层级化的块结构,随后用最小的叶子块进行索引
  • 在检索过程中检索出top k个叶子块
  • 如果存在n个叶子块都指向同一个更大的父块,那么我们就用这个父块来替换这些子块,并将其送入大模型用于生成答案。

1.4 查询扩展

1.4.1 使用生成的答案进行查询扩展

Precise Zero-Shot Dense Retrieval without Relevance Labels

  • 给定输入查询后,这种方法首先会指示 LLM 提供一个假设答案,无论其正确性如何
  • 然后,将查询和生成的答案合并在一个提示中,并发送给检索系统
    • 基本目的是希望检索到更像答案的文档。
    • 假设答案的正确性并不重要,因为感兴趣的是它的结构和表述

1.3.2 用多个相关问题扩展查询

Query Expansion by Prompting Large Language Models

  • 利用 LLM 生成 N 个与原始查询相关的问题
  • 将所有问题(加上原始查询)发送给检索系统。
  • 通过这种方法,可以从向量库中检索到更多文档。

参考内容:

提升RAG检索质量的三个高级技巧(查询扩展、交叉编码器重排序和嵌入适配器)

相关推荐
dalong103 分钟前
A26:扫雷游戏
笔记·游戏·aardio
山岚的运维笔记1 小时前
SQL Server笔记 -- 第50章 存储过程
数据库·笔记·sql·microsoft·oracle·sqlserver
寒秋花开曾相惜1 小时前
(学习笔记)2.1 信息存储(2.1.1 十六进制表示法)
笔记·学习
神明不懂浪漫2 小时前
【第十三章】操作符详解,预处理指令详解
c语言·开发语言·经验分享·笔记
此刻觐神2 小时前
Windows学习笔记-18(MFC项目-制作快捷方式管理工具)
windows·笔记·学习·mfc
FakeOccupational3 小时前
【电路笔记 元器件】存储设备:RAM 静态随机存取存储器(SRAM)芯片+异步 SRAM 的特性+异步 SRAM读写测试(HDL)
笔记·fpga开发
Alice_whj4 小时前
AI云原生笔记
人工智能·笔记·云原生
Lyan-X4 小时前
鲁鹏教授《计算机视觉与深度学习》课程笔记与思考 ——13. 生成模型 VAE:从无监督学习到显式密度估计的建模与实现
人工智能·笔记·深度学习·计算机视觉
马猴烧酒.4 小时前
【面试八股|Mysql篇】Mysql常见面试题详解笔记
笔记·mysql·面试
不想看见4044 小时前
Word Search -- 回溯法--力扣101算法题解笔记
笔记·算法·leetcode