RAG进阶笔记:RAG进阶

1 查询/索引部分

1.1 层次索引

  • 创建两个索引------一个由摘要组成,另一个由文档块组成
  • 分两步进行搜索:首先通过摘要过滤出相关文档,接着只在这个相关群体内进行搜索

1.2 假设性问题

  • 让LLM为每个块生成一个假设性问题,并将这些问题以向量形式嵌入
  • 在运行时,针对这个问题向量的索引进行查询搜索(用问题向量替换文档的块向量)
  • 检索后将原始文本块作为上下文发送给LLM以获取答案
  • 这种方法由于查询和假设性问题之间的语义相似性更高,从而提高了搜索质量

1.3 句子窗口检索

  • 文档中的每个句子都被单独嵌入向量
  • 在检索到的关键句子前后各扩展k个句子,然后将这个扩展的上下文发送给LLM

1.4 父文档检索器(自动合并检索器)

  • 文档被分割成一个层级化的块结构,随后用最小的叶子块进行索引
  • 在检索过程中检索出top k个叶子块
  • 如果存在n个叶子块都指向同一个更大的父块,那么我们就用这个父块来替换这些子块,并将其送入大模型用于生成答案。

1.4 查询扩展

1.4.1 使用生成的答案进行查询扩展

Precise Zero-Shot Dense Retrieval without Relevance Labels

  • 给定输入查询后,这种方法首先会指示 LLM 提供一个假设答案,无论其正确性如何
  • 然后,将查询和生成的答案合并在一个提示中,并发送给检索系统
    • 基本目的是希望检索到更像答案的文档。
    • 假设答案的正确性并不重要,因为感兴趣的是它的结构和表述

1.3.2 用多个相关问题扩展查询

Query Expansion by Prompting Large Language Models

  • 利用 LLM 生成 N 个与原始查询相关的问题
  • 将所有问题(加上原始查询)发送给检索系统。
  • 通过这种方法,可以从向量库中检索到更多文档。

参考内容:

提升RAG检索质量的三个高级技巧(查询扩展、交叉编码器重排序和嵌入适配器)

相关推荐
代码游侠4 分钟前
应用——统计文件字符数、单词数、行数
服务器·笔记·算法
EQ-雪梨蛋花汤12 分钟前
【Unity笔记】 WorldStreamer2指南——针对大世界的流式加载与优化
笔记·unity·游戏引擎
haiyu柠檬44 分钟前
Ruby On Rails 笔记6——常用回调上
笔记·后端·ruby on rails
程思扬1 小时前
你的模型你做主:Fooocus + cpolar,安全远程生成 AI 图像
人工智能·笔记·tcp/ip·前端框架·figma·蓝湖
S_Yu_Tong2 小时前
C#图解教程笔记17-枚举器和迭代器
笔记
_落纸2 小时前
《传感器与检测技术》第 4 章 光电式传感器原理与应用
笔记·自动化
兜兜转转了多少年3 小时前
《Prompt Engineering白皮书》笔记04 System / Context / Role 三种提示工程
人工智能·笔记·prompt
BlackWolfSky3 小时前
ES6 学习笔记3—7数值的扩展、8函数的扩展
前端·javascript·笔记·学习·es6
Oll Correct3 小时前
Excel基础操作(四)
笔记·excel
摇滚侠3 小时前
ElasticSearch 教程入门到精通,核心概念,系统架构,单节点集群,故障转移,水平扩容,笔记33、34、35、36、37
笔记·elasticsearch·系统架构