Pytorch:torchvision.transforms.Compose

transforms.Compose 是PyTorch库中torchvision.transforms 模块提供的一个功能,它允许将多个图像变换操作组合起来 。当你在处理图像,并需要依次应用多个变换(如缩放、裁剪、归一化等)时,Compose可以把这些变换串联成一个单一的操作,这样你就可以非常方便地在数据集上应用这个组合操作。

使用Compose的时候,通常是在定义数据加载时进行。以下是一个例子:

python 复制代码
from torchvision import transforms

# 定义一系列图像变换操作
transformations = transforms.Compose([
    transforms.Resize(256),            # 缩放图像,使得短边为256像素
    transforms.CenterCrop(224),        # 从中心裁剪224x224的图像
    transforms.ToTensor(),             # 将PIL图像或NumPy ndarray转换为FloatTensor,并归一化至[0.0, 1.0]
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 对图像进行标准化处理
])

# 然后你可以将这些组合的变换应用到数据集上
from torchvision.datasets import ImageFolder
dataset = ImageFolder(root='path_to_dataset', transform=transformations)

在上述代码中,transforms.Compose 用来将四个图像预处理步骤串联起来:

  • transforms.Resize(256):调整图像大小。
  • transforms.CenterCrop(224):从图像中心裁剪出一个224x224大小的区域。
  • transforms.ToTensor():将图像转换为PyTorch的Tensor。
  • transforms.Normalize:标准化图像数据。

这样,当你从dataset中取数据时,每个获取的图像项目都会自动通过这个组合的变换流程处理。这是机器学习和深度学习实验中进行数据预处理的一种常见方式。

相关推荐
黑心萝卜三条杠21 分钟前
Everywhere Attack:通过多目标植入提升对抗样本的目标迁移性
人工智能
程序员三藏31 分钟前
如何使用Jmeter进行压力测试?
自动化测试·软件测试·python·测试工具·jmeter·测试用例·压力测试
carpell34 分钟前
【语义分割专栏】3:Segnet原理篇
人工智能·python·深度学习·计算机视觉·语义分割
24K纯学渣35 分钟前
Python编码格式化之PEP8编码规范
开发语言·ide·python·pycharm
怒视天下37 分钟前
零基础玩转Python生物信息学:数据分析与算法实现
开发语言·python
ahead~1 小时前
【大模型原理与技术-毛玉仁】第五章 模型编辑
人工智能·深度学习·机器学习
zhanshuo1 小时前
Python元组黑科技:3招让数据安全暴增200%,学生管理系统实战揭秘!
python
空中湖1 小时前
免费批量图片格式转换工具
图像处理·python·程序人生
迪娜学姐1 小时前
GenSpark vs Manus实测对比:文献综述与学术PPT,哪家强?
论文阅读·人工智能·prompt·powerpoint·论文笔记
TDengine (老段)1 小时前
TDengine 在电力行业如何使用 AI ?
大数据·数据库·人工智能·时序数据库·tdengine·涛思数据