Pytorch:torchvision.transforms.Compose

transforms.Compose 是PyTorch库中torchvision.transforms 模块提供的一个功能,它允许将多个图像变换操作组合起来 。当你在处理图像,并需要依次应用多个变换(如缩放、裁剪、归一化等)时,Compose可以把这些变换串联成一个单一的操作,这样你就可以非常方便地在数据集上应用这个组合操作。

使用Compose的时候,通常是在定义数据加载时进行。以下是一个例子:

python 复制代码
from torchvision import transforms

# 定义一系列图像变换操作
transformations = transforms.Compose([
    transforms.Resize(256),            # 缩放图像,使得短边为256像素
    transforms.CenterCrop(224),        # 从中心裁剪224x224的图像
    transforms.ToTensor(),             # 将PIL图像或NumPy ndarray转换为FloatTensor,并归一化至[0.0, 1.0]
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 对图像进行标准化处理
])

# 然后你可以将这些组合的变换应用到数据集上
from torchvision.datasets import ImageFolder
dataset = ImageFolder(root='path_to_dataset', transform=transformations)

在上述代码中,transforms.Compose 用来将四个图像预处理步骤串联起来:

  • transforms.Resize(256):调整图像大小。
  • transforms.CenterCrop(224):从图像中心裁剪出一个224x224大小的区域。
  • transforms.ToTensor():将图像转换为PyTorch的Tensor。
  • transforms.Normalize:标准化图像数据。

这样,当你从dataset中取数据时,每个获取的图像项目都会自动通过这个组合的变换流程处理。这是机器学习和深度学习实验中进行数据预处理的一种常见方式。

相关推荐
清月电子17 分钟前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z19 分钟前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人28 分钟前
AI浪潮下,前端路在何方
前端·人工智能·ai编程
橙汁味的风1 小时前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习
极客小云1 小时前
【生物医学NLP信息抽取:药物识别、基因识别与化学物质实体识别教程与应用】
python·机器学习·nlp
南_山无梅落1 小时前
12.Python3函数基础:定义、调用与参数传递规则
python
itwangyang5201 小时前
AIDD-人工智能药物设计-AI 制药编码之战:预测癌症反应,选对方法是关键
人工智能
蓝桉~MLGT1 小时前
Ai-Agent学习历程—— 阶段1——环境的选择、Pydantic基座、Jupyter Notebook的使用
人工智能·学习·jupyter
油泼辣子多加1 小时前
【信创】算法开发适配
人工智能·深度学习·算法·机器学习
数据皮皮侠2 小时前
2m气温数据集(1940-2024)
大数据·数据库·人工智能·制造·微信开放平台