Pytorch:torchvision.transforms.Compose

transforms.Compose 是PyTorch库中torchvision.transforms 模块提供的一个功能,它允许将多个图像变换操作组合起来 。当你在处理图像,并需要依次应用多个变换(如缩放、裁剪、归一化等)时,Compose可以把这些变换串联成一个单一的操作,这样你就可以非常方便地在数据集上应用这个组合操作。

使用Compose的时候,通常是在定义数据加载时进行。以下是一个例子:

python 复制代码
from torchvision import transforms

# 定义一系列图像变换操作
transformations = transforms.Compose([
    transforms.Resize(256),            # 缩放图像,使得短边为256像素
    transforms.CenterCrop(224),        # 从中心裁剪224x224的图像
    transforms.ToTensor(),             # 将PIL图像或NumPy ndarray转换为FloatTensor,并归一化至[0.0, 1.0]
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 对图像进行标准化处理
])

# 然后你可以将这些组合的变换应用到数据集上
from torchvision.datasets import ImageFolder
dataset = ImageFolder(root='path_to_dataset', transform=transformations)

在上述代码中,transforms.Compose 用来将四个图像预处理步骤串联起来:

  • transforms.Resize(256):调整图像大小。
  • transforms.CenterCrop(224):从图像中心裁剪出一个224x224大小的区域。
  • transforms.ToTensor():将图像转换为PyTorch的Tensor。
  • transforms.Normalize:标准化图像数据。

这样,当你从dataset中取数据时,每个获取的图像项目都会自动通过这个组合的变换流程处理。这是机器学习和深度学习实验中进行数据预处理的一种常见方式。

相关推荐
咚咚王者11 小时前
人工智能之数据分析 numpy:第十章 副本视图
人工智能·数据分析·numpy
Dev7z11 小时前
让阅卷不再繁琐:图像识别与数据分析提升智能答题卡评分效率
人工智能·计算机视觉
咚咚王者11 小时前
人工智能之数据分析 numpy:第十一章 字符串与字节交换
人工智能·数据分析·numpy
数字孪生家族14 小时前
视频孪生与空间智能:重构数字时空认知,定义智能决策新范式
人工智能·重构·空间智能·视频孪生与空间智能
FL1717131414 小时前
Pytorch保存pt和pkl
人工智能·pytorch·python
jieshenai14 小时前
5090显卡,基于vllm完成大模型推理
人工智能·自然语言处理
逻极16 小时前
云智融合:AIGC与云计算服务新范式(深度解析)
人工智能·云计算·aigc·云服务
爱学习的小道长16 小时前
进程、线程、协程三者的区别和联系
python·ubuntu
雪兽软件16 小时前
人工智能(AI)的商业模式创新路线图
人工智能