矩阵计算性能优化-初探

背景

矩阵计算无论是在高性能计算还是深度学习中,都是比较常用的操作,常规的矩阵相乘包括大量的浮点数计算或者乘加运算,是典型的计算密集型算子。矩阵运算的性能直接展示了程序员设计的矩阵算法对CPU的利用能力。

FLOPS和FLOPs

  • FLOPS 意指每秒浮点运算次数。用来衡量硬件的性能
  • FLOPs 是浮点运算次数,可以用来衡量算法/模型复杂度

在性能优化的过程中,我们首先需要获取当前硬件的FLOPS,再通过FLOPs / cost_time 获取当前算法每秒的浮点运算次数,通过比较两者之间的差距,衡量自己对CPU的利用能力。

那么,同样是计算,为什么利用能力会有差距呢? 现代计算机系统使用多级缓存来减少处理器与主存之间的数据传输延迟。矩阵计算算法设计主要考虑如何使用更好的数据访问模式以减少cache miss。 在硬件水平相同,不考虑并行处理与分布式计算带来的通信开销的情况下,降低cache miss,可以显著提高性能。

矩阵计算常规实现

以下是一个矩阵计算的常规实现

C++ 复制代码
void naive_gemm(const float* A, const float* B, float* C, const int M, const int N, const int K) { 
    for (int m = 0; m < M; ++m) {  // 循环1
        for (int n = 0; n < N; ++n) {  // 循环2
            for (int k = 0; k < K; ++k) {  // 循环3
                C[m * N + n] += A[m * K + k] * B[k * N + n];
            }
        } 
    } 
}

为了方便后面讲述,这里为每个循环添加了标记

我们可以看到,每次循环都会获取不同列的值,在矩阵本身按行存储的同时,相当于每次获取同一列的不同数据时,都要读取。这会大大增加cache miss的频率。

矩阵计算优化1

C++ 复制代码
void naive_gemm(const float* A, const float* B, float* C, const int M, const int N, const int K) { 
    for (int m = 0; m < M; ++m) {  // 循环1
        for (int k = 0; k < K; ++k) {  // 循环3
            for (int n = 0; n < N; ++n) {  // 循环2
                C[m * N + n] += A[m * K + k] * B[k * N + n];
            }
        } 
    } 
}

通过对循环进行重排我们发现,

每次循环从获取B的每列不同值变成了每行不同值,这就让我们可以通过一次读取矩阵一行的数据写入cache这个行为可以获得收益,而不是每次循环都会造成cache miss。通过这种方式可以大大增加矩阵计算的性能。

相关推荐
颜如玉8 小时前
HikariCP:Dead code elimination优化
后端·性能优化·源码
DemonAvenger19 小时前
NoSQL与MySQL混合架构设计:从入门到实战的最佳实践
数据库·mysql·性能优化
Pu_Nine_92 天前
深入理解节流(Throttle):原理、实现与应用场景
javascript·性能优化·es6·节流·lodash 库
文人sec2 天前
性能测试-jmeter9-逻辑控制器、定时器压力并发
测试工具·jmeter·性能优化·模块测试
鼠鼠我捏,要死了捏2 天前
RocketMQ 高可用集群原理深度解析与性能优化实践指南
性能优化·消息队列·rocketmq
李游Leo3 天前
JavaScript事件机制与性能优化:防抖 / 节流 / 事件委托 / Passive Event Listeners 全解析
开发语言·javascript·性能优化
不想被吃掉氩3 天前
MySQL的性能优化。
数据库·mysql·性能优化
DemonAvenger3 天前
数据库日志系统深度解析:从binlog到redo/undo日志的实践指南
数据库·mysql·性能优化
努力的小郑3 天前
MySQL索引(四):深入剖析索引失效的原因与优化方案
后端·mysql·性能优化
陈言必行4 天前
Unity 性能优化 之 静态资源优化 (音频 | 模型 | 纹理 | 动画)
unity·性能优化·游戏引擎