吴恩达机器学习笔记 三十 什么是聚类 K-means

聚类(clustering) 是一种无监督学习算法 ,关注多个数据点并自动找到相似的数据点,在数据中找到一种特定的结构。无监督学习算法的数据集中没有标签 y ,所以不能说哪个是"正确的 y "。

K-means算法

K-means算法就是在重复做两件事:一个是把点分配给集群质心 ,另一个是移动集群的中心

例如,要求算法找到下图中的两个类,第一步随机选取两个地方 ,然后遍历每个点,看看它离那个更近

第二步:计算每个簇的中心,并把集群中心移动到这里,然后再次遍历每个点看看它离哪一个更近,然后重复,直到中心不再变化。

相关推荐
使一颗心免于哀伤17 小时前
《设计模式之禅》笔记摘录 - 21.状态模式
笔记·设计模式
AI小云3 天前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
_落纸3 天前
三大基础无源电子元件——电阻(R)、电感(L)、电容(C)
笔记
Alice-YUE3 天前
【CSS学习笔记3】css特性
前端·css·笔记·html
2303_Alpha3 天前
SpringBoot
笔记·学习
L.fountain3 天前
机器学习shap分析案例
人工智能·机器学习
weixin_429630263 天前
机器学习-第一章
人工智能·机器学习
Cedric11133 天前
机器学习中的距离总结
人工智能·机器学习
寒月霜华3 天前
机器学习-数据标注
人工智能·机器学习
Hello_Embed3 天前
STM32HAL 快速入门(二十):UART 中断改进 —— 环形缓冲区解决数据丢失
笔记·stm32·单片机·学习·嵌入式软件