PyTorch-----torch.nn.Softmax()函数

Softmax原理

Softmax 函数是一种常用的激活函数,通常用于多分类问题中。它将一个含有多个实数值的向量(通常称为 logits)转换成一个概率分布,使得每个元素都在 (0, 1) 区间内,并且所有元素的和为 1。

假设我们有一个实数值向量 z,其中 z = [z1, z2, ..., zn],其中 zi 是向量 z 的第 i 个元素。Softmax 函数将向量 z 转换为一个概率分布向量 p = [p1, p2, ..., pn],其中 pi 表示类别 i 的概率。

Softmax 函数的定义如下:

其中,zi 是 logits 向量 z 的第 i 个元素,n 是 logits 向量 z 的长度(即类别的数量),e 是自然对数的底(约等于 2.71828)。

Softmax 函数的计算过程如下:

  1. 对 logits 向量 z 中的每个元素进行指数化(即计算 e 的 z 次方)。
  2. 计算所有指数化的值的和(即分母部分)。
  3. 将每个指数化的值除以总和,得到归一化后的概率值。

Softmax 函数的一个关键特性是它的输出是一个概率分布,即所有输出值的和为 1,因此可以用于表示多个互斥的类别的概率。

在神经网络中,Softmax 函数通常作为输出层的激活函数使用,用于将网络的最后一层输出转换为概率分布,以便进行多分类任务的训练和预测。

softmax应用

torch.nn.Softmax 是 PyTorch 中的一个类,用于计算 softmax 函数。softmax 函数常用于多分类问题中,将一个具有任意实数值的向量转换为一个概率分布,使得每个元素都在 (0, 1) 之间,并且所有元素的和为 1。

在 PyTorch 中,torch.nn.Softmax 可以作为一个层(Layer)添加到神经网络模型中,也可以作为一个函数使用。它的语法如下:

python 复制代码
torch.nn.Softmax(dim=None)
  • dim(可选):指定 softmax 函数计算的维度。默认值为 -1,表示最后一个维度。

torch.nn.Softmax 类初始化后可以调用其 forward 方法来计算 softmax 函数。另外,你也可以直接使用 torch.softmax() 函数来计算 softmax。

下面是使用 torch.nn.Softmax 类的一个示例:

python 复制代码
import torch
import torch.nn as nn

# 创建一个 3x4 的输入张量
input_tensor = torch.randn(3, 4)

# 创建 Softmax 层
softmax_layer = nn.Softmax(dim=1)

# 对输入张量应用 Softmax 层
output_tensor = softmax_layer(input_tensor)

print(output_tensor)

这里,我们首先创建了一个 3x4 的输入张量 input_tensor,然后创建了一个 softmax 层,并将其应用于输入张量。最终得到的 output_tensor 是一个概率分布,其中每一行的元素都在 (0, 1) 之间,并且每一行的元素之和为 1。

你也可以使用 torch.softmax() 函数直接计算 softmax,示例如下:

python 复制代码
output_tensor = torch.softmax(input_tensor, dim=1)

这与使用 softmax 层的结果是相同的。

相关推荐
databook13 小时前
Manim实现脉冲闪烁特效
后端·python·动效
程序设计实验室14 小时前
2025年了,在 Django 之外,Python Web 框架还能怎么选?
python
倔强青铜三15 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
用户25191624271118 小时前
Python之语言特点
python
刘立军19 小时前
使用pyHugeGraph查询HugeGraph图数据
python·graphql
数据智能老司机1 天前
精通 Python 设计模式——创建型设计模式
python·设计模式·架构
数据智能老司机1 天前
精通 Python 设计模式——SOLID 原则
python·设计模式·架构
c8i1 天前
django中的FBV 和 CBV
python·django
c8i1 天前
python中的闭包和装饰器
python
这里有鱼汤1 天前
小白必看:QMT里的miniQMT入门教程
后端·python