机器学习(复试)

学习分类

其学习形式主要分为:有监督学习、无监督学习、半监督学习

有监督

有监督学习(supervised learning),需要你事先需要准备好要输入数据(训练样本)与真实的输出结果(参考答案)

预测结果分类

比如有监督学习可以划分为:回归问题和分类问题

如果预测结果是离散的,通常为分类问题,而为连续的,则是回归问题。

机器学习的专业术语

  1. 模型:模型这一词语将会贯穿整个教程的始末,它是机器学习中的核心概念。
  2. 数据集
  3. 样本&特征
  4. 向量
  5. 矩阵:矩阵看成由向量组成的二维数组

假设函数和损失函数

  1. 假设函数:假设函数(Hypothesis Function)可表述为 y=f(x) 其中 x 表示输入数据,而 y 表示输出的预测结果
  2. 损失函数:损失函数(Loss Function)又叫目标函数,简写为 L(x),这里的 x 是假设函数得出的预测结果"y",如果 L(x) 的返回值越大就表示预测结果与实际偏差越大,越小则证明预测值越来越"逼近"真实值,
  3. 优化方法:"优化方法"可以理解为假设函数和损失函数之间的沟通桥梁。

拟合&过拟合&欠拟合

1)拟合:形象地说,"拟合"就是把平面坐标系中一系列散落的点,用一条光滑的曲线连接起来,因此拟合也被称为"曲线拟合"。

  1. 过拟合:过拟合(overfitting)与是机器学习模型训练过程中经常遇到的问题,所谓过拟合,通俗来讲就是模型的泛化能力较差,也就是过拟合的模型在训练样本中表现优越,但是在验证数据以及测试数据集中表现不佳。过拟合问题在机器学习中经常遇到,主要是因为训练时样本过少,特征值过多导致的,后续还会详细介绍。

  2. 欠拟合:欠拟合(underfitting)恰好与过拟合相反,它指的是"曲线"不能很好的"拟合"数据。

相关推荐
学历真的很重要6 小时前
VsCode+Roo Code+Gemini 2.5 Pro+Gemini Balance AI辅助编程环境搭建(理论上通过多个Api Key负载均衡达到无限免费Gemini 2.5 Pro)
前端·人工智能·vscode·后端·语言模型·负载均衡·ai编程
普通网友6 小时前
微服务注册中心与负载均衡实战精要,微软 2025 年 8 月更新:对固态硬盘与电脑功能有哪些潜在的影响。
人工智能·ai智能体·技术问答
苍何6 小时前
一人手搓!AI 漫剧从0到1详细教程
人工智能
苍何6 小时前
Gemini 3 刚刷屏,蚂蚁灵光又整活:一句话生成「闪游戏」
人工智能
苍何6 小时前
越来越对 AI 做的 PPT 敬佩了!(附7大用法)
人工智能
苍何6 小时前
超全Nano Banana Pro 提示词案例库来啦,小白也能轻松上手
人工智能
阿杰学AI7 小时前
AI核心知识39——大语言模型之World Model(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·世界模型·world model·sara
智慧地球(AI·Earth)7 小时前
Vibe Coding:你被取代了吗?
人工智能
大、男人8 小时前
DeepAgent学习
人工智能·学习
测试人社区—66798 小时前
提升测试覆盖率的有效手段剖析
人工智能·学习·flutter·ui·自动化·测试覆盖率