机器学习(复试)

学习分类

其学习形式主要分为:有监督学习、无监督学习、半监督学习

有监督

有监督学习(supervised learning),需要你事先需要准备好要输入数据(训练样本)与真实的输出结果(参考答案)

预测结果分类

比如有监督学习可以划分为:回归问题和分类问题

如果预测结果是离散的,通常为分类问题,而为连续的,则是回归问题。

机器学习的专业术语

  1. 模型:模型这一词语将会贯穿整个教程的始末,它是机器学习中的核心概念。
  2. 数据集
  3. 样本&特征
  4. 向量
  5. 矩阵:矩阵看成由向量组成的二维数组

假设函数和损失函数

  1. 假设函数:假设函数(Hypothesis Function)可表述为 y=f(x) 其中 x 表示输入数据,而 y 表示输出的预测结果
  2. 损失函数:损失函数(Loss Function)又叫目标函数,简写为 L(x),这里的 x 是假设函数得出的预测结果"y",如果 L(x) 的返回值越大就表示预测结果与实际偏差越大,越小则证明预测值越来越"逼近"真实值,
  3. 优化方法:"优化方法"可以理解为假设函数和损失函数之间的沟通桥梁。

拟合&过拟合&欠拟合

1)拟合:形象地说,"拟合"就是把平面坐标系中一系列散落的点,用一条光滑的曲线连接起来,因此拟合也被称为"曲线拟合"。

  1. 过拟合:过拟合(overfitting)与是机器学习模型训练过程中经常遇到的问题,所谓过拟合,通俗来讲就是模型的泛化能力较差,也就是过拟合的模型在训练样本中表现优越,但是在验证数据以及测试数据集中表现不佳。过拟合问题在机器学习中经常遇到,主要是因为训练时样本过少,特征值过多导致的,后续还会详细介绍。

  2. 欠拟合:欠拟合(underfitting)恰好与过拟合相反,它指的是"曲线"不能很好的"拟合"数据。

相关推荐
晚霞的不甘24 分钟前
CANN:华为全栈AI计算框架的深度解析(终极扩展版 · 完整篇)
人工智能·华为
lisw053 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_941623324 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛4 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI5 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus5 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声5 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API5 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
咚咚王者5 小时前
人工智能之数据分析 numpy:第十三章 工具衔接与迁移
人工智能·数据分析·numpy
咚咚王者5 小时前
人工智能之数据分析 numpy:第九章 数组运算(二)
人工智能·数据分析·numpy