机器学习(复试)

学习分类

其学习形式主要分为:有监督学习、无监督学习、半监督学习

有监督

有监督学习(supervised learning),需要你事先需要准备好要输入数据(训练样本)与真实的输出结果(参考答案)

预测结果分类

比如有监督学习可以划分为:回归问题和分类问题

如果预测结果是离散的,通常为分类问题,而为连续的,则是回归问题。

机器学习的专业术语

  1. 模型:模型这一词语将会贯穿整个教程的始末,它是机器学习中的核心概念。
  2. 数据集
  3. 样本&特征
  4. 向量
  5. 矩阵:矩阵看成由向量组成的二维数组

假设函数和损失函数

  1. 假设函数:假设函数(Hypothesis Function)可表述为 y=f(x) 其中 x 表示输入数据,而 y 表示输出的预测结果
  2. 损失函数:损失函数(Loss Function)又叫目标函数,简写为 L(x),这里的 x 是假设函数得出的预测结果"y",如果 L(x) 的返回值越大就表示预测结果与实际偏差越大,越小则证明预测值越来越"逼近"真实值,
  3. 优化方法:"优化方法"可以理解为假设函数和损失函数之间的沟通桥梁。

拟合&过拟合&欠拟合

1)拟合:形象地说,"拟合"就是把平面坐标系中一系列散落的点,用一条光滑的曲线连接起来,因此拟合也被称为"曲线拟合"。

  1. 过拟合:过拟合(overfitting)与是机器学习模型训练过程中经常遇到的问题,所谓过拟合,通俗来讲就是模型的泛化能力较差,也就是过拟合的模型在训练样本中表现优越,但是在验证数据以及测试数据集中表现不佳。过拟合问题在机器学习中经常遇到,主要是因为训练时样本过少,特征值过多导致的,后续还会详细介绍。

  2. 欠拟合:欠拟合(underfitting)恰好与过拟合相反,它指的是"曲线"不能很好的"拟合"数据。

相关推荐
我家大宝最可爱10 分钟前
强化学习基础-拒绝采样
人工智能·算法·机器学习
刘大猫.1 小时前
XNMS项目-拓扑图展示
java·人工智能·算法·拓扑·拓扑图·节点树·xnms
TTGGGFF6 小时前
控制系统建模仿真(四):线性控制系统的数学模型
人工智能·算法
UXbot6 小时前
UI设计工具推荐合集
前端·人工智能·ui
kicikng6 小时前
智能体来了(西南总部)实战指南:AI调度官与AI Agent指挥官的Prompt核心逻辑
人工智能·prompt·多智能体系统
抓个马尾女孩6 小时前
为什么self-attention除以根号dk而不是其他值
人工智能·深度学习·机器学习·transformer
叫我辉哥e16 小时前
新手进阶Python:办公看板集成ERP跨系统同步+自动备份+AI异常复盘
开发语言·人工智能·python
Loo国昌7 小时前
【LangChain1.0】第五阶段:RAG高级篇(高级检索与优化)
人工智能·后端·语言模型·架构
伊克罗德信息科技7 小时前
技术分享 | 用Dify搭建个人AI知识助手
人工智能
TOPGUS7 小时前
谷歌发布三大AI购物新功能:从对话式搜索到AI代你下单
大数据·人工智能·搜索引擎·chatgpt·谷歌·seo·数字营销