Java八股文(数据结构)

Java八股文の数据结构

数据结构

  1. 请解释以下数据结构的概念:链表、栈、队列和树。

链表是一种线性数据结构,由节点组成,每个节点包含了指向下一个节点的指针;

栈是一种后进先出(LIFO)的数据结构,只能在一端进行插入和删除操作;

队列是一种先进先出(FIFO)的数据结构,一端进行插入操作,在另一端进行删除操作;

树是一种非线性数据结构,由节点和边组成,其中父节点可以有多个子节点。

  1. 请解释下面时间复杂度符号的含义:O(1)、O(log n)、O(n)和O(n^2)。

O(1)表示算法的执行时间不随输入规模变化;

O(log n)表示算法的执行时间随输入规模的增加而增加,但增加速度较慢;

O(n)表示算法的执行时间与输入规模成正比;

O(n^2)表示算法的执行时间与输入规模的平方成正比。

  1. 请解释什么是二分查找,并提供一个二分查找的实现。

二分查找是一种在有序数组中查找元素的算法,每次都将区间缩小为原来的一半,直到找到目标元素或无法再缩小。

以下是一个二分查找的实现(Java):

java 复制代码
public int binarySearch(int[] arr, int target) {
    int left = 0;
    int right = arr.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (arr[mid] == target) {
            return mid;
        } else if (arr[mid] < target) {
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }
    return -1;
}
  1. 请解释什么是哈希表,并提供一个哈希函数的示例。

哈希表是一种基于哈希函数的数据结构,用于存储和查找键值对。

哈希函数将键映射为一个固定大小的数组索引,使得在查找或插入时可以快速定位。

以下是一个哈希函数的示例(Java):

java 复制代码
public int hashFunction(String key) {
    int hash = 0;
    for (int i = 0; i < key.length(); i++) {
        hash = (hash + key.charAt(i) - 'a') % tableSize;
    }
    return hash;
}

在此示例中,假设我们将英文字母映射为整数,'a'对应0,'b'对应1,以此类推。

  1. 请解释什么是二叉树,并提供一个二叉树的遍历实现(前序、中序和后序)。

二叉树是一种特殊的树结构,每个节点最多有两个子节点,称为左子节点和右子节点。

以下是二叉树的前序、中序和后序遍历的实现(Java):

java 复制代码
// 前序遍历(根-左-右)
public void preOrderTraversal(TreeNode root) {
    if (root == null) {
        return;
    }
    System.out.println(root.val);
    preOrderTraversal(root.left);
    preOrderTraversal(root.right);
}

// 中序遍历(左-根-右)
public void inOrderTraversal(TreeNode root) {
    if (root == null) {
        return;
    }
    inOrderTraversal(root.left);
    System.out.println(root.val);
    inOrderTraversal(root.right);
}

// 后序遍历(左-右-根)
public void postOrderTraversal(TreeNode root) {
    if (root == null) {
        return;
    }
    postOrderTraversal(root.left);
    postOrderTraversal(root.right);
    System.out.println(root.val);
}

这里的TreeNode 是二叉树的节点类,包含一个值val和左右子节点的引用。

  1. 请解释什么是图,并提供一种图的表示方法。

图是一种非线性数据结构,由节点(顶点)和边组成,表示顶点之间的关系。

常用的图的表示方法有邻接矩阵和邻接表。

邻接矩阵使用二维数组表示节点之间的连接关系,而邻接表则使用链表数组表示每个节点的邻居。

  1. 请解释什么是堆,并提供一个堆的实现。

堆是一种完全二叉树,分为最大堆和最小堆。

最大堆中,每个父节点的值都大于或等于其子节点的值;

最小堆中,每个父节点的值都小于或等于其子节点的值。

以下是一个最大堆的实现(Java):

java 复制代码
class MaxHeap {
    private int[] heap;
    private int size;
    
    public MaxHeap(int capacity) {
        heap = new int[capacity];
        size = 0;
    }
    
    public void insert(int value) {
        if (size == heap.length) {
            throw new IllegalStateException("Heap is full");
        }
        
        heap[size] = value;
        siftUp(size);
        size++;
    }
    
    private void siftUp(int index) {
        while (index > 0 && heap[index] > heap[parentIndex(index)]) {
            swap(index, parentIndex(index));
            index = parentIndex(index);
        }
    }
    
    public int removeMax() {
        if (size == 0) {
            throw new IllegalStateException("Heap is empty");
        }
        
        int max = heap[0];
        heap[0] = heap[size - 1];
        size--;
        siftDown(0);
        return max;
    }
    
    private void siftDown(int index) {
        while (leftChildIndex(index) < size) {
            int maxIndex = leftChildIndex(index);
            if (rightChildIndex(index) < size && heap[rightChildIndex(index)] > heap[leftChildIndex(index)]) {
                maxIndex = rightChildIndex(index);
            }
            if (heap[index] >= heap[maxIndex]) {
                break;
            }
            swap(index, maxIndex);
            index = maxIndex;
        }
    }
    
    // Helper methods for calculating parent and child indices
    private int parentIndex(int index) {
        return (index - 1) / 2;
    }
    
    private int leftChildIndex(int index) {
        return 2 * index + 1;
    }
    
    private int rightChildIndex(int index) {
        return 2 * index + 2;
    }
    
    private void swap(int index1, int index2) {
        int temp = heap[index1];
        heap[index1] = heap[index2];
        heap[index2] = temp;
    }
}

该堆类提供了插入和删除最大值的操作,并保持了堆的性质。

  1. 请解释什么是哈夫曼树,并提供一个哈夫曼编码的实现。

哈夫曼树是一种用于数据编码的树结构,用于将频率较高的字符编码为较短的二进制码,以实现更高的压缩比。

哈夫曼编码的实现需要构建哈夫曼树,并通过DFS遍历树来生成每个字符的编码。

以下是一个哈夫曼编码的实现(Java):

java 复制代码
class HuffmanNode implements Comparable<HuffmanNode> {
    char value;
    int frequency;
    HuffmanNode left;
    HuffmanNode right;
    
    public HuffmanNode(char value, int frequency) {
        this.value = value;
        this.frequency = frequency;
    }
    
    @Override
    public int compareTo(HuffmanNode other) {
        return this.frequency - other.frequency;
    }
}

public String huffmanEncode(String text) {
    if (text.isEmpty()) {
        return "";
    }
    
    // Calculate character frequencies
    Map<Character, Integer> frequencies = new HashMap<>();
    for (char c : text.toCharArray()) {
        frequencies.put(c, frequencies.getOrDefault(c, 0) + 1);
    }
    
    // Build Huffman tree
    PriorityQueue<HuffmanNode> pq = new PriorityQueue<>();
    for (Map.Entry<Character, Integer> entry : frequencies.entrySet()) {
        pq.offer(new HuffmanNode(entry.getKey(), entry.getValue()));
    }
    while (pq.size() > 1) {
        HuffmanNode left = pq.poll();
        HuffmanNode right = pq.poll();
        HuffmanNode merged = new HuffmanNode('-', left.frequency + right.frequency);
        merged.left = left;
        merged.right = right;
        pq.offer(merged);
    }
    
    // Generate Huffman codes
    Map<Character, String> codes = new HashMap<>();
    generateCodes(pq.peek(), "", codes);
    
    // Encode the text
    StringBuilder encodedText = new StringBuilder();
    for (char c : text.toCharArray()) {
        encodedText.append(codes.get(c));
    }
    return encodedText.toString();
}

private void generateCodes(HuffmanNode node, String code, Map<Character, String> codes) {
    if (node == null) {
        return;
    }
    
    if (node.left == null && node.right == null) {
        codes.put(node.value, code);
    }
    
    generateCodes(node.left, code + "0", codes);
    generateCodes(node.right, code + "1", codes);
}

该示例中,huffmanEncode方法接受一个字符串,并返回其哈夫曼编码后的结果。

  1. 请解释深度优先搜索(DFS)和广度优先搜索(BFS)的区别。

DFS和BFS是两种图遍历的算法。

DFS以深度为优先,从起始节点开始,尽可能深入地访问其邻居节点,直到无法再深入为止,然后回溯到上一个节点。

BFS以广度为优先,从起始节点开始,依次访问同一层级的节点,再逐层向下一层级访问。

DFS适用于查找目标在树或图中的路径,而BFS适用于查找最短路径或查找目标在特定距离内的节点。

  1. 请解释什么是红黑树,并说明其性质。

红黑树是一种自平衡的二叉搜索树,具有以下性质:

● 每个节点是红色或黑色。

● 根节点是黑色。

● 每个叶子节点(NIL节点)是黑色。

● 如果一个节点是红色,则其子节点必须是黑色(不能有两个相邻的红色节点)。

● 从任一节点到其每个叶子的所有路径都包含相同数量的黑色节点。

  1. 请解释什么是AVL树,并说明其性质。

AVL树是一种自平衡的二叉搜索树,具有以下性质:

● 对于每个节点,其左子树和右子树的高度差(平衡因子)最多为1。

● 任意节点的左子树和右子树都是AVL树。

  1. 请解释什么是B树,并说明其特点。

B树是一种自平衡的多路搜索树,具有以下特点:

● 每个节点最多有M个子节点(M>=2)。

● 除根节点和叶子节点外,每个节点至少有M/2个子节点。

● 所有叶子节点都在同一层级上。

  1. 请解释什么是缓存淘汰策略,并提供两个常见的缓存淘汰策略。

缓存淘汰策略用于在缓存容量不足时确定哪些项目应从缓存中淘汰。

常见的缓存淘汰策略有:

● 最近最少使用(Least Recently Used, LRU):淘汰最近最少使用的项目,即最长时间未被访问的项目。

● 最不常用(Least Frequently Used, LFU):淘汰使用频率最低的项目,即被访问次数最少的项目。

  1. 请解释什么是拓扑排序,并提供一个拓扑排序的实现。

拓扑排序是一种对有向无环图进行排序的算法,使得所有边的方向均从前向后。

以下是一个拓扑排序的实现(Java):

java 复制代码
public List<Integer> topologicalSort(int numCourses, int[][] prerequisites) {
    List<Integer> sortedOrder = new ArrayList<>();
    if (numCourses <= 0) {
        return sortedOrder;
    }

    // 1. 构建图和入度数组
    Map<Integer, List<Integer>> graph = new HashMap<>();
    int[] inDegree = new int[numCourses];
    for (int i = 0; i < numCourses; i++) {
        graph.put(i, new ArrayList<>());
    }
    for (int[] prerequisite : prerequisites) {
        int parent = prerequisite[1];
        int child = prerequisite[0];
        graph.get(parent).add(child);
        inDegree[child]++;
    }

    // 2. 将入度为0的节点加入队列
    Queue<Integer> queue = new LinkedList<>();
    for (int i = 0; i < numCourses; i++) {
        if (inDegree[i] == 0) {
            queue.offer(i);
        }
    }

    // 3. 逐个从队列取出节点,减少相关节点的入度并判断是否入队
    while (!queue.isEmpty()) {
        int node = queue.poll();
        sortedOrder.add(node);
        List<Integer> children = graph.get(node);
        for (int child : children) {
            inDegree[child]--;
            if (inDegree[child] == 0) {
                queue.offer(child);
            }
        }
    }

    // 4. 判断是否存在环
    if (sortedOrder.size() != numCourses) {
        return new ArrayList<>();
    }
    return sortedOrder;
}

该方法接受课程数量和先修关系的二维数组,并返回一个拓扑有序的课程列表。

  1. 请解释什么是并查集,并提供一个并查集的实现。

并查集是一种用于解决集合合并和查询的数据结构,支持以下两种操作:

● 查找(Find):确定元素所属的集合。

● 合并(Union):将两个集合合并为一个集合。

以下是一个并查集的实现(Java):

java 复制代码
class UnionFind {
    private int[] parent;
    private int[] rank;
    
    public UnionFind(int size) {
        parent = new int[size];
        rank = new int[size];
        for (int i = 0; i < size; i++) {
            parent[i] = i;
            rank[i] = 0;
        }
    }
    
    public int find(int x) {
        if (parent[x] != x) {
            parent[x] = find(parent[x]);
        }
        return parent[x];
    }
    
    public void union(int x, int y) {
        int rootX = find(x);
        int rootY = find(y);
        if (rootX != rootY) {
            if (rank[rootX] < rank[rootY]) {
                parent[rootX] = rootY;
            } else if (rank[rootX] > rank[rootY]) {
                parent[rootY] = rootX;
            } else {
                parent[rootY] = rootX;
                rank[rootX]++;
            }
        }
    }
}

该并查集类提供了查找和合并操作,并使用路径压缩和按秩合并的优化策略。

  1. 请解释什么是动态规划,并提供一个使用动态规划解决的问题示例。

动态规划(Dynamic Programming,简称DP)是一种解决多阶段决策最优化问题的方法。

它将问题划分为若干个子问题,并保存子问题的解来避免重复计算。

通过递推求解各个子问题,最终得到原问题的解。

一个典型的动态规划问题是求解最长公共子序列(Longest Common Subsequence,简称LCS)。

给定两个字符串s1和s2,求它们的最长公共子序列的长度。

示例:

java 复制代码
public class LongestCommonSubsequence {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length();
        int n = text2.length();
        int[][] dp = new int[m + 1][n + 1]; // dp[i][j]表示text1前i个字符和text2前j个字符的最长公共子序列长度
        
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1; // 当前字符相等,最长公共子序列长度加1
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); // 当前字符不相等,取前一步的最优解
                }
            }
        }
        
        return dp[m][n];
    }
}

在这个示例中,使用动态规划求解了最长公共子序列的长度。

通过定义一个二维数组dp,其中dp[i][j]表示text1前i个字符和text2前j个字符的最长公共子序列长度。

在遍历字符串text1和text2时,根据字符是否相等来更新dp数组的值。

最终返回dp[m][n]即为最长公共子序列的长度。

动态规划的思想可以帮助我们高效地解决很多复杂的问题,包括字符串匹配、最短路径、背包问题等。

  1. 实现一个二叉树的前序遍历算法。
java 复制代码
class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;
    
    public TreeNode(int val) {
        this.val = val;
    }
}

public class PreorderTraversal {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if (root == null) {
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode node = stack.pop();
            result.add(node.val);
            if (node.right != null) {
                stack.push(node.right);
            }
            if (node.left != null) {
                stack.push(node.left);
            }
        }
        return result;
    }
}
  1. 实现一个队列,并实现基本的操作:入队、出队、获取队首元素。
java 复制代码
class MyQueue {
    private Stack<Integer> inStack;
    private Stack<Integer> outStack;
    
    public MyQueue() {
        inStack = new Stack<>();
        outStack = new Stack<>();
    }
    
    public void push(int x) {
        inStack.push(x);
    }
    
    public int pop() {
        if (outStack.isEmpty()) {
            while (!inStack.isEmpty()) {
                outStack.push(inStack.pop());
            }
        }
        return outStack.pop();
    }
    
    public int peek() {
        if (outStack.isEmpty()) {
            while (!inStack.isEmpty()) {
                outStack.push(inStack.pop());
            }
        }
        return outStack.peek();
    }
    
    public boolean empty() {
        return inStack.isEmpty() && outStack.isEmpty();
    }
}
  1. 实现一个栈,并实现基本的操作:入栈、出栈、获取栈顶元素、判断栈是否为空。
java 复制代码
class MyStack {
    private Deque<Integer> stack;
    
    public MyStack() {
        stack = new LinkedList<>();
    }
    
    public void push(int x) {
        stack.push(x);
    }
    
    public int pop() {
        return stack.pop();
    }
    
    public int top() {
        return stack.peek();
    }
    
    public boolean empty() {
        return stack.isEmpty();
    }
}
  1. 实现一个链表的反转。
java 复制代码
class ListNode {
    int val;
    ListNode next;
    
    public ListNode(int val) {
        this.val = val;
    }
}

public class ReverseLinkedList {
    public ListNode reverseList(ListNode head) {
        ListNode prev = null;
        ListNode curr = head;
        while (curr != null) {
            ListNode next = curr.next;
            curr.next = prev;
            prev = curr;
            curr = next;
        }
        return prev;
    }
}
  1. 实现一个图的深度优先搜索(DFS)算法。
java 复制代码
import java.util.ArrayList;
import java.util.List;

class Graph {
    private int V;
    private List<List<Integer>> adj;
    
    public Graph(int V) {
        this.V = V;
        adj = new ArrayList<>(V);
        for (int i = 0; i < V; i++) {
            adj.add(new ArrayList<>());
        }
    }
    
    public void addEdge(int u, int v) {
        adj.get(u).add(v);
    }
    
    public void DFS(int v) {
        boolean[] visited = new boolean[V];
        DFSUtil(v, visited);
    }
    
    private void DFSUtil(int v, boolean[] visited) {
        visited[v] = true;
        System.out.print(v + " ");
        for (int i : adj.get(v)) {
            if (!visited[i]) {
                DFSUtil(i, visited);
            }
        }
    }
}
  1. 实现一个图的广度优先搜索(BFS)算法。
java 复制代码
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;

class Graph {
    private int V;
    private List<List<Integer>> adj;
    
    public Graph(int V) {
        this.V = V;
        adj = new ArrayList<>(V);
        for (int i = 0; i < V; i++) {
            adj.add(new ArrayList<>());
        }
    }
    
    public void addEdge(int u, int v) {
        adj.get(u).add(v);
    }
    
    public void BFS(int v) {
        boolean[] visited = new boolean[V];
        Queue<Integer> queue = new LinkedList<>();
        visited[v] = true;
        queue.offer(v);
        
        while (!queue.isEmpty()) {
            int curr = queue.poll();
            System.out.print(curr + " ");
            for (int i : adj.get(curr)) {
                if (!visited[i]) {
                    visited[i] = true;
                    queue.offer(i);
                }
            }
        }
    }
}
  1. 实现一个最小堆。
java 复制代码
class MinHeap {
    private int[] heap;
    private int size;
    
    public MinHeap(int capacity) {
        heap = new int[capacity];
        size = 0;
    }
    
    public void insert(int key) {
        if (size == heap.length) {
            // 堆已满
            return;
        }
        size++;
        int i = size - 1;
        heap[i] = key;
        
        while (i > 0 && heap[parent(i)] > heap[i]) {
            // 交换节点值
            swap(i, parent(i));
            i = parent(i);
        }
    }
    
    public void delete(int key) {
        int index = -1;
        for (int i = 0; i < size; i++) {
            if (heap[i] == key) {
                index = i;
                break;
            }
        }
        if (index == -1) {
            // 不存在该元素
            return;
        }
        decreaseKey(index, Integer.MIN_VALUE);
        extractMin();
    }
    
    public int extractMin() {
        if (size == 0) {
            return Integer.MIN_VALUE;
        }
        if (size == 1) {
            size--;
            return heap[0];
        }
        int root = heap[0];
        heap[0] = heap[size - 1];
        size--;
        minHeapify(0);
        return root;
    }
    
    private void decreaseKey(int i, int newValue) {
        heap[i] = newValue;
        while (i != 0 && heap[parent(i)] > heap[i]) {
            swap(i, parent(i));
            i = parent(i);
        }
    }
    
    private void minHeapify(int i) {
        int smallest = i;
        int left = leftChild(i);
        int right = rightChild(i);
        
        if (left < size && heap[left] < heap[smallest]) {
            smallest = left;
        }
        
        if (right < size && heap[right] < heap[smallest]) {
            smallest = right;
        }
        
        if (smallest != i) {
            swap(i, smallest);
            minHeapify(smallest);
        }
    }
    
    private int parent(int i) {
        return (i - 1) / 2;
    }
    
    private int leftChild(int i) {
        return 2 * i + 1;
    }
    
    private int rightChild(int i) {
        return 2 * i + 2;
    }
    
    private void swap(int i, int j) {
        int temp = heap[i];
        heap[i] = heap[j];
        heap[j] = temp;
    }
}
  1. 实现一个哈希表。
java 复制代码
class MyHashMap {
    private final int SIZE = 10000;
    private ListNode[] table;
    
    class ListNode {
        int key;
        int value;
        ListNode next;
        
        public ListNode(int key, int value) {
            this.key = key;
            this.value = value;
            this.next = null;
        }
    }
    
    public MyHashMap() {
        table = new ListNode[SIZE];
    }
    
    public void put(int key, int value) {
        int index = getIndex(key);
        if (table[index] == null) {
            table[index] = new ListNode(-1, -1);
        }
        ListNode prev = findElement(table[index], key);
        if (prev.next == null) {
            prev.next = new ListNode(key, value);
        } else {
            prev.next.value = value;
        }
    }
    
    public int get(int key) {
        int index = getIndex(key);
        if (table[index] == null) {
            return -1;
        }
        ListNode prev = findElement(table[index], key);
        if (prev.next == null) {
            return -1;
        }
        return prev.next.value;
    }
    
    public void remove(int key) {
        int index = getIndex(key);
        if (table[index] == null) {
            return;
        }
        ListNode prev = findElement(table[index], key);
        if (prev.next == null) {
            return;
        }
        prev.next = prev.next.next;
    }
    
    private int getIndex(int key) {
        return Integer.hashCode(key) % SIZE;
    }
    
    private ListNode findElement(ListNode bucket, int key) {
        ListNode prev = null;
        ListNode curr = bucket;
        while (curr != null && curr.key != key) {
            prev = curr;
            curr = curr.next;
        }
        return prev;
    }
}
  1. 实现一个动态数组。
java 复制代码
class DynamicArray {
    private int[] array;
    private int size;
    private int capacity;
    
    public DynamicArray() {
        array = new int[10];
        size = 0;
        capacity = 10;
    }
    
    public void add(int value) {
        if (size == capacity) {
            expandCapacity();
        }
        array[size] = value;
        size++;
    }
    
    public int get(int index) {
        if (index < 0 || index >= size) {
            throw new IndexOutOfBoundsException();
        }
        return array[index];
    }
    
    public void set(int index, int value) {
        if (index < 0 || index >= size) {
            throw new IndexOutOfBoundsException();
        }
        array[index] = value;
    }
    
    public int size() {
        return size;
    }
    
    public void remove(int index) {
        if (index < 0 || index >= size) {
            throw new IndexOutOfBoundsException();
        }
        for (int i = index; i < size - 1; i++) {
            array[i] = array[i + 1];
        }
        size--;
    }
    
    private void expandCapacity() {
        int newCapacity = capacity * 2;
        int[] newArray = new int[newCapacity];
        for (int i = 0; i < capacity; i++) {
            newArray[i] = array[i];
        }
        capacity = newCapacity;
        array = newArray;
    }
}
  1. 实现一个有序数组的二分查找。
java 复制代码
class BinarySearch {
    public int search(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] == target) {
                return mid;
            } else if (nums[mid] < target) {
                left = mid + 1;
            } else {
                right = mid - 1;
            }
        }
        return -1;
    }
}
  1. 实现一个字符串的反转。
java 复制代码
class StringReverse {
    public String reverse(String s) {
        char[] chars = s.toCharArray();
        int left = 0;
        int right = chars.length - 1;
        while (left < right) {
            char temp = chars[left];
            chars[left] = chars[right];
            chars[right] = temp;
            left++;
            right--;
        }
        return new String(chars);
    }
}
  1. 实现一个队列的使用两个栈来模拟。
java 复制代码
class MyQueue {
    private Stack<Integer> inStack;
    private Stack<Integer> outStack;
    
    public MyQueue() {
        inStack = new Stack<>();
        outStack = new Stack<>();
    }
    
    public void push(int x) {
        inStack.push(x);
    }
    
    public int pop() {
        if (outStack.isEmpty()) {
            while (!inStack.isEmpty()) {
                outStack.push(inStack.pop());
            }
        }
        return outStack.pop();
    }
    
    public int peek() {
        if (outStack.isEmpty()) {
            while (!inStack.isEmpty()) {
                outStack.push(inStack.pop());
            }
        }
        return outStack.peek();
    }
    
    public boolean empty() {
        return inStack.isEmpty() && outStack.isEmpty();
    }
}
  1. 实现一个栈的使用两个队列来模拟。
java 复制代码
class MyStack {
    private Queue<Integer> inQueue;
    private Queue<Integer> outQueue;
    
    public MyStack() {
        inQueue = new LinkedList<>();
        outQueue = new LinkedList<>();
    }
    
    public void push(int x) {
        inQueue.offer(x);
        while (!outQueue.isEmpty()) {
            inQueue.offer(outQueue.poll());
        }
        Queue<Integer> temp = inQueue;
        inQueue = outQueue;
        outQueue = temp;
    }
    
    public int pop() {
        return outQueue.poll();
    }
    
    public int top() {
        return outQueue.peek();
    }
    
    public boolean empty() {
        return outQueue.isEmpty();
    }
}
  1. 实现一个判断链表中是否有环的算法。
java 复制代码
class ListNode {
    int val;
    ListNode next;
    
    public ListNode(int val) {
        this.val = val;
        this.next = null;
    }
}

class LinkedListCycle {
    public boolean hasCycle(ListNode head) {
        ListNode slow = head;
        ListNode fast = head;
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;
            if (slow == fast) {
                return true;
            }
        }
        return false;
    }
}

内容来自

相关推荐
2401_854391082 分钟前
城镇住房保障:SpringBoot系统功能概览
java·spring boot·后端
hummhumm4 分钟前
Oracle 第29章:Oracle数据库未来展望
java·开发语言·数据库·python·sql·oracle·database
wainyz13 分钟前
Java NIO操作
java·开发语言·nio
工业3D_大熊18 分钟前
【虚拟仿真】CEETRON SDK在船舶流体与结构仿真中的应用解读
java·python·科技·信息可视化·c#·制造·虚拟现实
lzb_kkk27 分钟前
【JavaEE】JUC的常见类
java·开发语言·java-ee
shymoy32 分钟前
Radix Sorts
数据结构·算法·排序算法
爬山算法1 小时前
Maven(28)如何使用Maven进行依赖解析?
java·maven
2401_857439691 小时前
SpringBoot框架在资产管理中的应用
java·spring boot·后端
怀旧6661 小时前
spring boot 项目配置https服务
java·spring boot·后端·学习·个人开发·1024程序员节
李老头探索1 小时前
Java面试之Java中实现多线程有几种方法
java·开发语言·面试