神经网络后面的层被freeze住,会影响前面的层的梯度吗?

神经网络后面的层被freeze住,会影响前面的层的梯度吗?

答案是不会。

假设一个最简单的神经网络,它只有一个输入 x x x,一个隐藏层神经元 h h h,和一个输出层神经元 y y y,均方差损失 L L L,真实标签 t t t:

h = w 1 ⋅ x y = w 2 ⋅ h L = 1 2 ( y − t ) 2 \begin{gathered} h = w_1 \cdot x \\ y = w_2 \cdot h \\ L=\frac{1}{2}(y-t)^2 \end{gathered} h=w1⋅xy=w2⋅hL=21(y−t)2

以下分 w 2 w_2 w2是否被freeze住,即 w 2 w_2 w2.requires_grad是否为True来讨论。

情况1: w 2 w_2 w2.requires_grad为True

这种情况下, L L L对 w 1 w_1 w1的梯度为:
∂ L ∂ w 1 = ∂ L ∂ y ⋅ ∂ y ∂ h ⋅ ∂ h ∂ w 1 \frac{\partial L}{\partial w 1}=\frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial h} \cdot \frac{\partial h}{\partial w 1} ∂w1∂L=∂y∂L⋅∂h∂y⋅∂w1∂h

∂ L ∂ y = ∂ ∂ y ( 1 2 ( y − t ) 2 ) = y − t \frac{\partial L}{\partial y}=\frac{\partial}{\partial y}\left(\frac{1}{2}(y-t)^2\right)=y-t ∂y∂L=∂y∂(21(y−t)2)=y−t

∂ y ∂ h = ∂ ∂ h ( w 2 ⋅ h ) = w 2 \frac{\partial y}{\partial h}=\frac{\partial}{\partial h}\left(w_2 \cdot h\right)=w_2 ∂h∂y=∂h∂(w2⋅h)=w2

∂ h ∂ w 1 = ∂ ∂ w 1 ( w 1 ⋅ x ) = x \frac{\partial h}{\partial w_1}=\frac{\partial}{\partial w_1}\left(w_1 \cdot x\right)=x ∂w1∂h=∂w1∂(w1⋅x)=x

因此:
∂ L ∂ w 1 = ∂ L ∂ y ⋅ ∂ y ∂ h ⋅ ∂ h ∂ w 1 = ( y − t ) ⋅ w 2 ⋅ x \frac{\partial L}{\partial w 1}=\frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial h} \cdot \frac{\partial h}{\partial w 1} = (y-t) \cdot w_2 \cdot x ∂w1∂L=∂y∂L⋅∂h∂y⋅∂w1∂h=(y−t)⋅w2⋅x

情况2: w 2 w_2 w2.requires_grad为False

这种情况下, w 2 w_2 w2被视为一个常数,此时 L L L对 w 1 w_1 w1的梯度仍然为:
∂ L ∂ w 1 = ∂ L ∂ y ⋅ ∂ y ∂ h ⋅ ∂ h ∂ w 1 = ( y − t ) ⋅ w 2 ⋅ x \frac{\partial L}{\partial w 1}=\frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial h} \cdot \frac{\partial h}{\partial w 1} = (y-t) \cdot w_2 \cdot x ∂w1∂L=∂y∂L⋅∂h∂y⋅∂w1∂h=(y−t)⋅w2⋅x

因为无论 w 2 w_2 w2是否被freeze住, ∂ y ∂ h = ∂ ∂ h ( w 2 ⋅ h ) = w 2 \frac{\partial y}{\partial h}=\frac{\partial}{\partial h}\left(w_2 \cdot h\right)=w_2 ∂h∂y=∂h∂(w2⋅h)=w2这一点是不会变的。

在计算 w 1 w_1 w1的梯度时,我们并不需要 w 2 w_2 w2的梯度,而是只需要 w 2 w_2 w2这个参数值。

相关推荐
新知图书3 分钟前
FastGPT工作流的节点
人工智能·fastgpt·ai agent·智能体·大模型应用开发
乾元4 分钟前
网络切片的自动化配置与 SLA 保证——5G / 专网场景中,从“逻辑隔离”到“可验证承诺”的工程实现
运维·开发语言·网络·人工智能·网络协议·重构
小程故事多_807 分钟前
RCAgent,基于LLM自主智能体的云平台根因分析实践与探索
人工智能·aigc
CHrisFC7 分钟前
中小型第三方环境检测实验室的数字化破局之选——江苏硕晟LIMS
大数据·运维·人工智能
2503_9469718612 分钟前
【AGI/Multi-Agent】2026年度AGI情感对齐与多智能体协同渗透基准索引 (Benchmark Index)
人工智能·网络安全·数据集·计算机图形学·多智能体
zzhongcy15 分钟前
Trae、Cursor、Copilot、Windsurf对比
人工智能·copilot
小北方城市网28 分钟前
GEO 智变新篇:质效双升 + 责任共生,打造 AI 时代本地商业长效增长引擎
大数据·人工智能·python·数据库架构
qq192572302736 分钟前
opencv
人工智能·opencv·计算机视觉
神算大模型APi--天枢64636 分钟前
自主算力筑基,垂域模型破局:国产硬件架构下的行业大模型训练与微调服务实践
大数据·人工智能·科技·架构·硬件架构
OAoffice40 分钟前
企业智能学练考软件分析指南
人工智能·学习·学练考一体化平台·企业学习考试平台