神经网络后面的层被freeze住,会影响前面的层的梯度吗?

神经网络后面的层被freeze住,会影响前面的层的梯度吗?

答案是不会。

假设一个最简单的神经网络,它只有一个输入 x x x,一个隐藏层神经元 h h h,和一个输出层神经元 y y y,均方差损失 L L L,真实标签 t t t:

h = w 1 ⋅ x y = w 2 ⋅ h L = 1 2 ( y − t ) 2 \begin{gathered} h = w_1 \cdot x \\ y = w_2 \cdot h \\ L=\frac{1}{2}(y-t)^2 \end{gathered} h=w1⋅xy=w2⋅hL=21(y−t)2

以下分 w 2 w_2 w2是否被freeze住,即 w 2 w_2 w2.requires_grad是否为True来讨论。

情况1: w 2 w_2 w2.requires_grad为True

这种情况下, L L L对 w 1 w_1 w1的梯度为:
∂ L ∂ w 1 = ∂ L ∂ y ⋅ ∂ y ∂ h ⋅ ∂ h ∂ w 1 \frac{\partial L}{\partial w 1}=\frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial h} \cdot \frac{\partial h}{\partial w 1} ∂w1∂L=∂y∂L⋅∂h∂y⋅∂w1∂h

∂ L ∂ y = ∂ ∂ y ( 1 2 ( y − t ) 2 ) = y − t \frac{\partial L}{\partial y}=\frac{\partial}{\partial y}\left(\frac{1}{2}(y-t)^2\right)=y-t ∂y∂L=∂y∂(21(y−t)2)=y−t

∂ y ∂ h = ∂ ∂ h ( w 2 ⋅ h ) = w 2 \frac{\partial y}{\partial h}=\frac{\partial}{\partial h}\left(w_2 \cdot h\right)=w_2 ∂h∂y=∂h∂(w2⋅h)=w2

∂ h ∂ w 1 = ∂ ∂ w 1 ( w 1 ⋅ x ) = x \frac{\partial h}{\partial w_1}=\frac{\partial}{\partial w_1}\left(w_1 \cdot x\right)=x ∂w1∂h=∂w1∂(w1⋅x)=x

因此:
∂ L ∂ w 1 = ∂ L ∂ y ⋅ ∂ y ∂ h ⋅ ∂ h ∂ w 1 = ( y − t ) ⋅ w 2 ⋅ x \frac{\partial L}{\partial w 1}=\frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial h} \cdot \frac{\partial h}{\partial w 1} = (y-t) \cdot w_2 \cdot x ∂w1∂L=∂y∂L⋅∂h∂y⋅∂w1∂h=(y−t)⋅w2⋅x

情况2: w 2 w_2 w2.requires_grad为False

这种情况下, w 2 w_2 w2被视为一个常数,此时 L L L对 w 1 w_1 w1的梯度仍然为:
∂ L ∂ w 1 = ∂ L ∂ y ⋅ ∂ y ∂ h ⋅ ∂ h ∂ w 1 = ( y − t ) ⋅ w 2 ⋅ x \frac{\partial L}{\partial w 1}=\frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial h} \cdot \frac{\partial h}{\partial w 1} = (y-t) \cdot w_2 \cdot x ∂w1∂L=∂y∂L⋅∂h∂y⋅∂w1∂h=(y−t)⋅w2⋅x

因为无论 w 2 w_2 w2是否被freeze住, ∂ y ∂ h = ∂ ∂ h ( w 2 ⋅ h ) = w 2 \frac{\partial y}{\partial h}=\frac{\partial}{\partial h}\left(w_2 \cdot h\right)=w_2 ∂h∂y=∂h∂(w2⋅h)=w2这一点是不会变的。

在计算 w 1 w_1 w1的梯度时,我们并不需要 w 2 w_2 w2的梯度,而是只需要 w 2 w_2 w2这个参数值。

相关推荐
小毅&Nora5 分钟前
【Spring AI Alibaba】⑥ 记忆管理(Memory):让Agent拥有“长期记忆“的智能方法
人工智能·spring ai·记忆管理
kevin_kang7 分钟前
06-Next.js 13构建现代化AI聊天界面
人工智能
Codebee8 分钟前
实战|Ooder 钩子机制全解析:AI 协同开发与权限框架集成实战
人工智能·后端
Coder_Boy_13 分钟前
基于SpringAI企业级智能教学考试平台视频辅助学习模块全业务闭环方案
人工智能·spring cloud
kevin_kang13 分钟前
09-JWT认证在Next.js中的最佳实践
人工智能
AI街潜水的八角14 分钟前
基于Opencv的二维码识别与创建
人工智能·opencv·计算机视觉
helloworld也报错?14 分钟前
目标检测系列之YOLOv11——v8模型的继续改进
人工智能·python·目标检测·目标跟踪
微光闪现14 分钟前
国际航班动态提醒与延误预测优选平台指南
大数据·人工智能·算法
iiiiii1115 分钟前
TD(λ),资格迹(Eligibility Traces)与时序差分学习的统一
人工智能·学习·机器学习·强化学习·rl