- 项目应用场景
- 可以应用于人脸面部三维特征点的提取 + 人脸面部的三维重建,项目的特点是基于 Pytorch 实现、快速、准确、稳定
- 项目效果:




- 项目流程 ==> 具体参见项目内
README.md
(1) 构建
bash
sh ./build.sh
(2) 执行示例
bash
# 1. running on still image, the options include: 2d_sparse, 2d_dense, 3d, depth, pncc, pose, uv_tex, ply, obj
python3 demo.py -f examples/inputs/emma.jpg --onnx # -o [2d_sparse, 2d_dense, 3d, depth, pncc, pose, uv_tex, ply, obj]
# 2. running on videos
python3 demo_video.py -f examples/inputs/videos/214.avi --onnx
# 3. running on videos smoothly by looking ahead by `n_next` frames
python3 demo_video_smooth.py -f examples/inputs/videos/214.avi --onnx
# 4. running on webcam
python3 demo_webcam_smooth.py --onnx