【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

Question 1

Add a title and axis labels to the plot shown in Figure 11.15.

python 复制代码
# ex 1
import matplotlib.pyplot as plt
y = 5 * x + rng.standard_normal(n_pts)
fig, ax = plt.subplots()
ax.scatter(x, y)
plt.title("linear function f(x, y)", fontsize=16)
plt.xlabel("X", fontsize=16)
plt.ylabel("Y", fontsize=16)
plt.grid()
plt.show()

输出的图像:

Question 2

Add titles to the histograms in Section 11.3.3.

Answer 1

python 复制代码
# ex 2
values = rng.standard_normal(1000)
fig, ax = plt.subplots()
ax.hist(values)
plt.title("histogram_1")
plt.grid()
plt.show()

输出的图像:

Answer 2

python 复制代码
fig, ax = plt.subplots()
ax.hist(values, bins=20)
plt.title("histogram_2")
plt.grid()
plt.show()

输出的图像:

Question 3

One common plotting task is including multiple subplots in the same figure. Show that the code in Listing 11.10 creates vertically stacked subplots, as shown in Figure 11.18. (Here the suptitle() method produces a "supertitle" that sits above both plots. See the Matplotlib documentation on subplots for other ways to create multiple subplots.)

python 复制代码
# ex 3
import numpy as np
from math import tau
x = np.linspace(0, tau, 100)
fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle(r"Vertically stacked plots of $\cos(\theta)$ and $\sin(\theta)$.")
ax1.grid()
ax1.plot(x, np.cos(x))
ax2.grid()
ax2.plot(x, np.sin(x))

输出的图像:

Question 4

Add a plot of the function cos(x - t/8) to the plot in Figure 11.14 with color "orange" and linestyle "dashdot" . Extra credit : Add an annotation as well. (The extra-credit step is much easier in an interactive Jupyter notebook, especially when finding the right coordinates for the annotation label and arrow.)

python 复制代码
#%%
# ex 4
from math import tau
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, tau, 100)

fig, ax = plt.subplots()

ax.set_xticks([0, tau / 4, tau / 2, 3 * tau / 4, tau])
ax.set_yticks([-1, -1 / 2, 0, 1 / 2, 1])
plt.grid()

ax.set_xticklabels([r'$0$', r'$\tau/4$', r'$\tau/2$', r'$3\tau/4$', r'$\tau$'])
ax.set_yticklabels([r'$-1$', r'$-1/2$', r'$0$', r'$1/2$', r'$1$'])

ax.set_title("One period of cosine and sine", fontsize=16)
ax.set_xlabel(r"$\theta$", fontsize=16)
ax.set_ylabel(r"$f(\theta)$", fontsize=16)

ax.annotate(r"$\cos(\theta)$", xy=(1.75, -0.3), xytext=(0.5, -0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
ax.annotate(r"$\sin(\theta)$", xy=(2.75, 0.5), xytext=(3.5, 0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
ax.annotate(r"$\cos(\theta - 2\pi / 8)$", xy=(1.83, 0.5), xytext=(1.0, 0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
fig.set_dpi(150)

ax.plot(x, np.cos(x), color="red", linestyle="dashed")
ax.plot(x, np.sin(x), color="blue", linestyle="dotted")
ax.plot(x, np.cos(x - tau / 8), color="orange", linestyle="dashdot")
plt.show()

输出的图像:

参考文献 Reference

《Learn Enough Python to be Dangerous------Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

相关推荐
五条凪9 分钟前
Verilog-Eval-v1基准测试集搭建指南
开发语言·人工智能·算法·语言模型
初学小白...10 分钟前
反射概述and获得反射对象
开发语言·python
后藤十八里27 分钟前
2025python学习笔记Part2
开发语言·python
寒秋丶30 分钟前
Milvus:向量字段-二进制向量、稀疏向量与密集向量(六)
数据库·人工智能·python·ai·ai编程·milvus·向量数据库
材料科学研究31 分钟前
深度学习PINN!从入门到精通!
python·深度学习·神经网络·pinn
屹奕1 小时前
基于EasyExcel实现Excel导出功能
java·开发语言·spring boot·excel
hixiong1231 小时前
C# OpencvSharp使用lpd_yunet进行车牌检测
开发语言·opencv·计算机视觉·c#
Lj2_jOker1 小时前
QT 给Qimage数据赋值,显示异常,像素对齐的坑
开发语言·前端·qt
吴名氏.1 小时前
细数Java中List的10个坑
java·开发语言·数据结构·list
初学者,亦行者1 小时前
Rayon并行迭代器:原理、实践与性能优化
java·开发语言·spring·rust