【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

Question 1

Add a title and axis labels to the plot shown in Figure 11.15.

python 复制代码
# ex 1
import matplotlib.pyplot as plt
y = 5 * x + rng.standard_normal(n_pts)
fig, ax = plt.subplots()
ax.scatter(x, y)
plt.title("linear function f(x, y)", fontsize=16)
plt.xlabel("X", fontsize=16)
plt.ylabel("Y", fontsize=16)
plt.grid()
plt.show()

输出的图像:

Question 2

Add titles to the histograms in Section 11.3.3.

Answer 1

python 复制代码
# ex 2
values = rng.standard_normal(1000)
fig, ax = plt.subplots()
ax.hist(values)
plt.title("histogram_1")
plt.grid()
plt.show()

输出的图像:

Answer 2

python 复制代码
fig, ax = plt.subplots()
ax.hist(values, bins=20)
plt.title("histogram_2")
plt.grid()
plt.show()

输出的图像:

Question 3

One common plotting task is including multiple subplots in the same figure. Show that the code in Listing 11.10 creates vertically stacked subplots, as shown in Figure 11.18. (Here the suptitle() method produces a "supertitle" that sits above both plots. See the Matplotlib documentation on subplots for other ways to create multiple subplots.)

python 复制代码
# ex 3
import numpy as np
from math import tau
x = np.linspace(0, tau, 100)
fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle(r"Vertically stacked plots of $\cos(\theta)$ and $\sin(\theta)$.")
ax1.grid()
ax1.plot(x, np.cos(x))
ax2.grid()
ax2.plot(x, np.sin(x))

输出的图像:

Question 4

Add a plot of the function cos(x - t/8) to the plot in Figure 11.14 with color "orange" and linestyle "dashdot" . Extra credit : Add an annotation as well. (The extra-credit step is much easier in an interactive Jupyter notebook, especially when finding the right coordinates for the annotation label and arrow.)

python 复制代码
#%%
# ex 4
from math import tau
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, tau, 100)

fig, ax = plt.subplots()

ax.set_xticks([0, tau / 4, tau / 2, 3 * tau / 4, tau])
ax.set_yticks([-1, -1 / 2, 0, 1 / 2, 1])
plt.grid()

ax.set_xticklabels([r'$0$', r'$\tau/4$', r'$\tau/2$', r'$3\tau/4$', r'$\tau$'])
ax.set_yticklabels([r'$-1$', r'$-1/2$', r'$0$', r'$1/2$', r'$1$'])

ax.set_title("One period of cosine and sine", fontsize=16)
ax.set_xlabel(r"$\theta$", fontsize=16)
ax.set_ylabel(r"$f(\theta)$", fontsize=16)

ax.annotate(r"$\cos(\theta)$", xy=(1.75, -0.3), xytext=(0.5, -0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
ax.annotate(r"$\sin(\theta)$", xy=(2.75, 0.5), xytext=(3.5, 0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
ax.annotate(r"$\cos(\theta - 2\pi / 8)$", xy=(1.83, 0.5), xytext=(1.0, 0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
fig.set_dpi(150)

ax.plot(x, np.cos(x), color="red", linestyle="dashed")
ax.plot(x, np.sin(x), color="blue", linestyle="dotted")
ax.plot(x, np.cos(x - tau / 8), color="orange", linestyle="dashdot")
plt.show()

输出的图像:

参考文献 Reference

《Learn Enough Python to be Dangerous------Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

相关推荐
灵感菇_1 小时前
Java 锁机制全面解析
java·开发语言
wazmlp0018873691 小时前
python第三次作业
开发语言·python
娇娇乔木1 小时前
模块十一--接口/抽象方法/多态--尚硅谷Javase笔记总结
java·开发语言
明月醉窗台1 小时前
qt使用笔记六之 Qt Creator、Qt Widgets、Qt Quick 详细解析
开发语言·笔记·qt
wangjialelele1 小时前
平衡二叉搜索树:AVL树和红黑树
java·c语言·开发语言·数据结构·c++·算法·深度优先
深蓝电商API1 小时前
住宅代理与数据中心代理在爬虫中的选择
爬虫·python
lili-felicity1 小时前
CANN性能调优与实战问题排查:从基础优化到排障工具落地
开发语言·人工智能
独自破碎E1 小时前
【BISHI15】小红的夹吃棋
android·java·开发语言
进阶小白猿2 小时前
Java技术八股学习Day33
java·开发语言·学习
历程里程碑2 小时前
普通数组----合并区间
java·数据结构·python·算法·leetcode·职场和发展·tornado