【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

Question 1

Add a title and axis labels to the plot shown in Figure 11.15.

python 复制代码
# ex 1
import matplotlib.pyplot as plt
y = 5 * x + rng.standard_normal(n_pts)
fig, ax = plt.subplots()
ax.scatter(x, y)
plt.title("linear function f(x, y)", fontsize=16)
plt.xlabel("X", fontsize=16)
plt.ylabel("Y", fontsize=16)
plt.grid()
plt.show()

输出的图像:

Question 2

Add titles to the histograms in Section 11.3.3.

Answer 1

python 复制代码
# ex 2
values = rng.standard_normal(1000)
fig, ax = plt.subplots()
ax.hist(values)
plt.title("histogram_1")
plt.grid()
plt.show()

输出的图像:

Answer 2

python 复制代码
fig, ax = plt.subplots()
ax.hist(values, bins=20)
plt.title("histogram_2")
plt.grid()
plt.show()

输出的图像:

Question 3

One common plotting task is including multiple subplots in the same figure. Show that the code in Listing 11.10 creates vertically stacked subplots, as shown in Figure 11.18. (Here the suptitle() method produces a "supertitle" that sits above both plots. See the Matplotlib documentation on subplots for other ways to create multiple subplots.)

python 复制代码
# ex 3
import numpy as np
from math import tau
x = np.linspace(0, tau, 100)
fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle(r"Vertically stacked plots of $\cos(\theta)$ and $\sin(\theta)$.")
ax1.grid()
ax1.plot(x, np.cos(x))
ax2.grid()
ax2.plot(x, np.sin(x))

输出的图像:

Question 4

Add a plot of the function cos(x - t/8) to the plot in Figure 11.14 with color "orange" and linestyle "dashdot" . Extra credit : Add an annotation as well. (The extra-credit step is much easier in an interactive Jupyter notebook, especially when finding the right coordinates for the annotation label and arrow.)

python 复制代码
#%%
# ex 4
from math import tau
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, tau, 100)

fig, ax = plt.subplots()

ax.set_xticks([0, tau / 4, tau / 2, 3 * tau / 4, tau])
ax.set_yticks([-1, -1 / 2, 0, 1 / 2, 1])
plt.grid()

ax.set_xticklabels([r'$0$', r'$\tau/4$', r'$\tau/2$', r'$3\tau/4$', r'$\tau$'])
ax.set_yticklabels([r'$-1$', r'$-1/2$', r'$0$', r'$1/2$', r'$1$'])

ax.set_title("One period of cosine and sine", fontsize=16)
ax.set_xlabel(r"$\theta$", fontsize=16)
ax.set_ylabel(r"$f(\theta)$", fontsize=16)

ax.annotate(r"$\cos(\theta)$", xy=(1.75, -0.3), xytext=(0.5, -0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
ax.annotate(r"$\sin(\theta)$", xy=(2.75, 0.5), xytext=(3.5, 0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
ax.annotate(r"$\cos(\theta - 2\pi / 8)$", xy=(1.83, 0.5), xytext=(1.0, 0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
fig.set_dpi(150)

ax.plot(x, np.cos(x), color="red", linestyle="dashed")
ax.plot(x, np.sin(x), color="blue", linestyle="dotted")
ax.plot(x, np.cos(x - tau / 8), color="orange", linestyle="dashdot")
plt.show()

输出的图像:

参考文献 Reference

《Learn Enough Python to be Dangerous------Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

相关推荐
景彡先生2 小时前
Python Selenium详解:从入门到实战,Web自动化的“瑞士军刀”
前端·python·selenium
程序员卷卷狗3 小时前
JVM 调优实战:从线上问题复盘到精细化内存治理
java·开发语言·jvm
lly2024063 小时前
ASP Folder:深入解析其功能与使用技巧
开发语言
雪域迷影4 小时前
Go语言中通过get请求获取api.open-meteo.com网站的天气数据
开发语言·后端·http·golang·get
珺毅同学5 小时前
YOLO输出COCO指标及YOLOv12报错
python·深度学习·yolo
ysdysyn6 小时前
C# 进程管理实战:检查与启动EXE程序的完整指南
开发语言·c#
IDOlaoluo6 小时前
PHP-5.2.1.tar.gz 离线安装教程:从源码编译到配置的详细步骤(附安装包)
开发语言·php
2401_841495646 小时前
Windows 系统中ffmpeg安装问题的彻底解决
windows·python·ffmpeg·bug·语音识别·下载·安装步骤
wangjialelele6 小时前
Qt中的常用组件:QWidget篇
开发语言·前端·c++·qt
waysolong907 小时前
MCP服务构建、使用
python