【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

Question 1

Add a title and axis labels to the plot shown in Figure 11.15.

python 复制代码
# ex 1
import matplotlib.pyplot as plt
y = 5 * x + rng.standard_normal(n_pts)
fig, ax = plt.subplots()
ax.scatter(x, y)
plt.title("linear function f(x, y)", fontsize=16)
plt.xlabel("X", fontsize=16)
plt.ylabel("Y", fontsize=16)
plt.grid()
plt.show()

输出的图像:

Question 2

Add titles to the histograms in Section 11.3.3.

Answer 1

python 复制代码
# ex 2
values = rng.standard_normal(1000)
fig, ax = plt.subplots()
ax.hist(values)
plt.title("histogram_1")
plt.grid()
plt.show()

输出的图像:

Answer 2

python 复制代码
fig, ax = plt.subplots()
ax.hist(values, bins=20)
plt.title("histogram_2")
plt.grid()
plt.show()

输出的图像:

Question 3

One common plotting task is including multiple subplots in the same figure. Show that the code in Listing 11.10 creates vertically stacked subplots, as shown in Figure 11.18. (Here the suptitle() method produces a "supertitle" that sits above both plots. See the Matplotlib documentation on subplots for other ways to create multiple subplots.)

python 复制代码
# ex 3
import numpy as np
from math import tau
x = np.linspace(0, tau, 100)
fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle(r"Vertically stacked plots of $\cos(\theta)$ and $\sin(\theta)$.")
ax1.grid()
ax1.plot(x, np.cos(x))
ax2.grid()
ax2.plot(x, np.sin(x))

输出的图像:

Question 4

Add a plot of the function cos(x - t/8) to the plot in Figure 11.14 with color "orange" and linestyle "dashdot" . Extra credit : Add an annotation as well. (The extra-credit step is much easier in an interactive Jupyter notebook, especially when finding the right coordinates for the annotation label and arrow.)

python 复制代码
#%%
# ex 4
from math import tau
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, tau, 100)

fig, ax = plt.subplots()

ax.set_xticks([0, tau / 4, tau / 2, 3 * tau / 4, tau])
ax.set_yticks([-1, -1 / 2, 0, 1 / 2, 1])
plt.grid()

ax.set_xticklabels([r'$0$', r'$\tau/4$', r'$\tau/2$', r'$3\tau/4$', r'$\tau$'])
ax.set_yticklabels([r'$-1$', r'$-1/2$', r'$0$', r'$1/2$', r'$1$'])

ax.set_title("One period of cosine and sine", fontsize=16)
ax.set_xlabel(r"$\theta$", fontsize=16)
ax.set_ylabel(r"$f(\theta)$", fontsize=16)

ax.annotate(r"$\cos(\theta)$", xy=(1.75, -0.3), xytext=(0.5, -0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
ax.annotate(r"$\sin(\theta)$", xy=(2.75, 0.5), xytext=(3.5, 0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
ax.annotate(r"$\cos(\theta - 2\pi / 8)$", xy=(1.83, 0.5), xytext=(1.0, 0.75), arrowprops={"facecolor": "black", "width": 1},
            fontsize=16)
fig.set_dpi(150)

ax.plot(x, np.cos(x), color="red", linestyle="dashed")
ax.plot(x, np.sin(x), color="blue", linestyle="dotted")
ax.plot(x, np.cos(x - tau / 8), color="orange", linestyle="dashdot")
plt.show()

输出的图像:

参考文献 Reference

《Learn Enough Python to be Dangerous------Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

相关推荐
Swizard4 分钟前
别买树莓派了!3步教你在安卓手机上跑通 CPython + PaddleOCR,打造随身 AI 识别终端
python·ai·移动开发
晨曦夜月22 分钟前
笔试强训day7
开发语言·c++·算法
Kurbaneli24 分钟前
先啃C语言还是直奔目标?
开发语言
weixin_3077791342 分钟前
Jenkins Pipeline 完全指南:核心概念、使用详解与最佳实践
开发语言·ci/cd·自动化·jenkins·etl
kk”1 小时前
c++红黑树
开发语言·c++
Gomiko1 小时前
JavaScript DOM 原生部分(二):元素内容修改
开发语言·javascript·ecmascript
Z_W_H_1 小时前
【C#】C#中值类型和引用类型参数传递的区别
开发语言·c#
Data_agent1 小时前
实战:用Splash搞定JavaScript密集型网页渲染
开发语言·javascript·ecmascript
leiming61 小时前
C++ 02 函数模板案例
开发语言·c++·算法
weixin_421585011 小时前
PYTHON 迭代器1 - PEP-255
开发语言·python