基于yolov2深度学习网络的螺丝螺母识别算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

复制代码
load yolov.mat% 加载训练好的目标检测器
img_size= [224,224];
imgPath = 'test/';        % 图像库路径
imgDir  = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt     = 0;
for i = 1:6          % 遍历结构体就可以一一处理图片了
    i
    if mod(i,1)==0
       figure
    end
    cnt     = cnt+1;
    subplot(1,1,cnt); 
    img = imread([imgPath imgDir(i).name]); %读取每张图片 
    [R,C,k]=size(img);
    K1=R/224;
    K2=C/224;

    I0              = imresize(img,img_size(1:2));
    [bboxes1,scores1] = detect(detector1,I0,'Threshold',0.4);
    if ~isempty(bboxes1) % 如果检测到目标
        I = insertObjectAnnotation(I0,'rectangle',bboxes1,scores1,'Color', 'r');% 在图像上绘制检测结果
    end
    [bboxes2,scores2] = detect(detector2,I0,'Threshold',0.3);
    if ~isempty(bboxes2) % 如果检测到目标
        I = insertObjectAnnotation(I,'rectangle',bboxes2,scores2,'Color', 'g');% 在图像上绘制检测结果
    end
    I               = imresize(I,[R/3,C/3]);

    imshow(I, []);  % 显示带有检测结果的图像
 
    pause(0.01);% 等待一小段时间,使图像显示更流畅
    if cnt==1
       cnt=0;
    end
end
123

4.算法理论概述

在工业自动化和质量控制领域,准确且高效的螺丝螺母识别至关重要。深度学习方法,特别是基于卷积神经网络(CNN)的目标检测技术,因其卓越的特征提取能力,成为解决此类问题的有效手段。YOLOv2作为实时目标检测领域的代表模型,以其端到端的预测方式、高精度与实时性,在螺丝螺母识别任务中展现出显著优势。

YOLOv2采用一种名为"Darknet-19"的预训练卷积网络作为特征提取器,其结构包括19个卷积层和5个最大池化层。网络后接若干卷积层和一个全连接层,实现对特征图的空间划分和目标预测。

YOLOv2采用多任务损失函数,包括定位损失(Localization Loss)、置信度损失(Confidence Loss)和分类损失(Classification Loss)。

YOLOv2采用非极大值抑制(Non-Maximum Suppression, NMS)去除冗余检测结果。对于每个类别,按照预测框的置信度降序排序,选择最高置信度框作为保留候选,然后对其他框计算与之的交并比(Intersection over Union, IoU),若IoU超过阈值(通常设为0.5),则剔除该框。此过程迭代直至所有候选框处理完毕。

针对螺丝螺母识别任务,需对YOLOv2进行以下适应性调整:

  1. 数据集准备:收集大量包含螺丝螺母的图像,标注其精确边界框和类别标签。数据增强策略如翻转、旋转、缩放等有助于提高模型泛化能力。

  2. 模型微调:在预训练的YOLOv2基础上,使用特定任务的数据集进行微调,优化网络权重以适应螺丝螺母识别需求。

  3. 锚框选取:根据螺丝螺母的实际尺寸分布,选择或调整合适的anchor boxes,确保模型能够覆盖各种尺寸和比例的螺丝螺母。

  4. 性能评估:使用平均精度(Average Precision, AP)等指标评价模型在螺丝螺母识别上的性能。AP综合考虑了召回率和精确率,能全面反映模型在不同IoU阈值下的表现。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
梦子要转行4 小时前
matlab/Simulink-全套50个汽车性能建模与仿真源码模型9
开发语言·matlab·汽车
Zevalin爱灰灰6 小时前
MATLAB GUI界面设计 第六章——常用库中的其它组件
开发语言·ui·matlab
一花·一叶17 小时前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算
昵称是6硬币17 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
OICQQ6765800818 小时前
创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别
yolo·pyqt·疲劳驾驶·检测识别·驾驶员检测·打哈欠检测·眼睛疲劳
曹勖之10 天前
simuilink和ROS2数据联通,Run后一直卡在Initializting
windows·matlab·simulink·ros2
king of code porter10 天前
目标检测之YOLOv5到YOLOv11——从架构设计和损失函数的变化分析
人工智能·yolo·目标检测
Zevalin爱灰灰10 天前
MATLAB GUI界面设计 第三章——仪器组件
开发语言·ui·matlab
算法如诗10 天前
基于SOA(海鸥优化算法)的路径规划Matlab实现方案
开发语言·算法·matlab
项目申报小狂人10 天前
2025年中科院三区全新算法,恒星振荡优化器:受自然启发的元启发式优化,完整MATLAB代码免费获取
开发语言·算法·matlab