【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

关于数据科学环境的建立,可以参考我的博客:【深耕 Python】Data Science with Python 数据科学(1)环境搭建

Jupyter代码片段1:简单数组的定义和排序

python 复制代码
import numpy as np
np.array([1, 2, 3])
a = np.array([9, 6, 2, 4, 3, 1])
print(len(a))
a.sort()
print(a)
a

输出结果:

Jupyter代码片段2:范围数组

python 复制代码
r = range(17)
print(r)
print(list(r))
a = np.arange(17)
a

输出结果:

Jupyter代码片段3:对数组的整体操作

python 复制代码
print([3 * i for i in r])
print(3 * a)
a ** 2

输出结果:

Jupyter代码片段4:numpy vs 循环用时比较

python 复制代码
import timeit
t1 = timeit.timeit("[i ** 2 for i in range(50)]")
t2 = timeit.timeit("import numpy as np; np.arange(50) ** 2")
t1, t2, t1 / t2

输出结果:

优化的底层原理: NumPy将循环语句使用C语言进行优化(Python本即用C语言写成)。

进一步比较2者的速度差异

python 复制代码
%%timeit
[i ** 2 for i in range(1000)]
python 复制代码
%%timeit
np.arange(1000) ** 2

输出#1:96 µs ± 5.32 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

输出#2:4.04 µs ± 413 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

这样,二者运算速度的区别就一目了然了。

Jupyter代码片段5:高维数组及其子数组

python 复制代码
a = np.array([[1, 2, 3], [4, 5, 6]])
print(a)
print(a.shape)
print(a[0, :])
print(a[:, 0])
A = a[0:2, 0:2]
print(A)
A = a[:2, :2]
A

输出结果:

Jupyter代码片段6:二维数组(矩阵)的求逆

python 复制代码
Ainv = np.linalg.inv(A)
print(Ainv)
print(A + Ainv)
print(A * Ainv)
print(A @ Ainv)
print(np.matmul(A, Ainv))

输出结果:

注意: (2阶)单位阵处的浮点误差。

Jupyter代码片段7:数组(矩阵)的重构

python 复制代码
a = np.arange(16)
print(a.reshape((2, 8)))
print(a)
b = a.reshape((4, 4))
print(b)
a.reshape((-1, 2))

输出结果:

注意(小坑点): 使用a.reshape()并不会改变a本身,需要结合赋值语句来使用。

参考文献 Reference

Learn Enough PYTHON to be Dangerous: Software Development, Flask Web Apps, and Beginning Data Science with Python, Michael Hartl, Pearson, 2023.

相关推荐
晓131321 分钟前
OpenCV篇——项目(二)OCR文档扫描
人工智能·python·opencv·pycharm·ocr
是小王同学啊~22 分钟前
(LangChain)RAG系统链路向量检索器之Retrievers(五)
python·算法·langchain
AIGC包拥它24 分钟前
提示技术系列——链式提示
人工智能·python·langchain·prompt
孟陬25 分钟前
Python matplotlib 如何**同时**展示正文和 emoji
python
何双新30 分钟前
第 1 课:Flask 简介与环境配置(Markdown 教案)
后端·python·flask
费弗里1 小时前
Python全栈应用开发利器Dash 3.x新版本介绍(2)
python·dash
吴佳浩1 小时前
Python入门指南-AI番外-MCP完整教程:从零开始学会Model Context Protocol
人工智能·python·mcp
加油吧zkf2 小时前
目标检测新纪元:DETR到Mamba实战解析
图像处理·人工智能·python·目标检测·分类
程序员阿超的博客2 小时前
Python 数据分析与机器学习入门 (五):Matplotlib 数据可视化基础
python·信息可视化·数据分析·matplotlib·数据可视化·python教程·pyplot
站大爷IP2 小时前
Python 办公实战:用 python-docx 自动生成 Word 文档
python