为什么索引的底层结构是B+树

B+树

1.数据库与数据交互的单位是page,而B+树的每个节点都是一个page,访问一个节点,就相当于进行了一次I/O操作。所以访问的节点越少,查找效率越大。而B+树是矮胖的,查找深度也不会太大。

2.B+树中的节点是有序存储的,对于范围查询、排序等操作,可以快速定位到目标数据,提高查询效率。

为什么不用二叉搜索树

二叉搜索树是一种二分查找树,有很好的查找性能,相当于二分查找。
但是当N比较大的时候,树的深度比较高。数据查询的时间主要依赖于磁盘IO的次数,二叉树深度越大,查找的次数越多,性能越差。如果退化成链表,那么会很大程度影响效率。

为什么不用B树

B+树的叶子节点构成了一个有序链表,这样可以很方便地进行范围查询和范围扫描。而B树的同层节点没有指针指向,所以可能需要在非叶子节点进行递归搜索,相对来说操作复杂度更高。

为什么不用AVL树

在AVL树中,为了保持树的平衡性,可能需要进行频繁的旋转操作,例如左旋和右旋。这样的操作会导致节点的频繁移动,影响了插入和删除操作的性能。

AVL树中每个节点需要额外存储平衡因子,以便判断节点是否平衡。这样会增加节点的存储空间,降低了内存的利用率。

在AVL树中,范围查询需要在树中进行遍历,相对来说效率较低。而B+树中叶子节点构成了有序链表,更适合于范围查询。

为什么不用红黑树

红黑树的插入和删除操作可能需要进行颜色变换和旋转操作,这增加了实现的复杂性。特别是在频繁的插入删除操作场景下,这些操作可能会造成性能的下降。

红黑树的每个节点都需要额外存储一个颜色信息,这增加了内存占用。相比之下,B树和B+树的节点结构相对简单,能够更有效地利用内存空间。

红黑树在范围查询操作中可能需要进行中序遍历,而且遍历过程中的节点访问顺序是不确定的,这导致了范围查询的效率较低。

相关推荐
l1t4 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
MarkHard1238 小时前
如何利用redis使用一个滑动窗口限流
数据库·redis·缓存
island13149 小时前
【Redis#10】渐进式遍历 | 数据库管理 | redis_cli | RES
数据库·redis·bootstrap
心想事成的幸运大王9 小时前
Redis的过期策略
数据库·redis·缓存
倔强的石头_9 小时前
CentOS 上安装KingbaseES(ISO包)详细教程
数据库
2401_8979300610 小时前
使用Docker轻松部署Neo4j图数据库
数据库·docker·neo4j
诗句藏于尽头10 小时前
Django模型与数据库表映射的两种方式
数据库·python·django
寻星探路11 小时前
数据库造神计划第六天---增删改查(CRUD)(2)
java·大数据·数据库
盖世英雄酱5813612 小时前
Read timed out问题 排查
java·数据库·后端
云动雨颤13 小时前
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
数据库·spring boot·tomcat