回归(maskrcnn)

一、写在前面

虽然粉丝量很少 但是这是一个很好的平台 记录自己的历程 我看了一个很好的讲解视频 我记录一下操作过程4-maskrcnn源码修改方法哔哩哔哩bilibili 作者已经注销帐号了 但内容很好

二、maskrcnn介绍

Mask R-CNN(Mask Region-based Convolutional Neural Network)是一种用于目标检测和实例分割的深度学习模型。它是在 Faster R-CNN 的基础上扩展而来,结合了目标检测和语义分割的能力。与传统的目标检测模型相比,Mask R-CNN 不仅可以检测图像中的物体,还可以准确地分割出每个检测到的物体的像素级别的掩码。

灵活性: Mask R-CNN 是一种灵活的模型架构,可以轻松适应不同的任务和数据集。它可以用于检测和分割各种类型的物体,并且可以在不同的场景中进行有效的应用。

端到端训练: Mask R-CNN 可以进行端到端的训练,这意味着它可以同时学习目标检测和实例分割任务,而无需单独训练不同的模型。这简化了训练流程并提高了模型的效率。

三、如何做

(1)标注

下面是我标注完的结果 附上代码

复制代码
import os
import json
from PIL import Image, ImageDraw
​
# 创建新文件夹
os.makedirs('mask_images', exist_ok=True)
​
# 读取 JSON 文件
with open('plant_001.png.json', 'r') as f:
    data = json.load(f)
​
# 遍历每个形状
for idx, shape in enumerate(data['shapes']):
    label = shape['label']
    points = shape['points']
​
    # 创建新的图像
    image = Image.new('RGB', (data['imageWidth'], data['imageHeight']), (0, 0, 0))
    draw = ImageDraw.Draw(image)
​
    # 将点列表转换为元组
    xy = [(point[0], point[1]) for point in points]
​
    # 绘制多边形
    draw.polygon(xy, fill=(0, 245, 0))
​
    # 保存掩码图
    image.save(os.path.join('mask_images', label + '_mask_' + str(idx) + '.png'))
​

(2)训练 源码在这下载 Releases · matterport/Mask_RCNN (github.com)

需要对源码进行一定的修改

相关推荐
叶庭云7 小时前
GitCode 与 GitHub 平台能力深度对比:聚焦于 AI 辅助开发与 Agent 自动化能力
人工智能·github·gitcode·源代码托管平台·ai 辅助开发·agent 自动化能力·易用性
【赫兹威客】浩哥7 小时前
农作物病虫害检测数据集分享及多版本YOLO模型训练验证
人工智能·计算机视觉·目标跟踪
WK-Q7 小时前
【论文解读】Transformers are RNNs
人工智能·语言模型·大模型·线性注意力
啊阿狸不会拉杆7 小时前
《机器学习导论》第 10 章-线性判别式
人工智能·python·算法·机器学习·numpy·lda·线性判别式
爱打代码的小林7 小时前
基于 OpenCV 与 Dlib 的人脸替换
人工智能·opencv·计算机视觉
无忧智库7 小时前
某市“十五五“知识产权大数据监管平台与全链条保护系统建设方案深度解读(WORD)
大数据·人工智能
顾北127 小时前
AI对话应用接口开发全解析:同步接口+SSE流式+智能体+前端对接
前端·人工智能
综合热讯7 小时前
股票融资融券交易时间限制一览与制度说明
大数据·人工智能·区块链
AEIC学术交流中心7 小时前
【快速EI检索 | ICPS出版】2026年计算机技术与可持续发展国际学术会议(CTSD 2026)
人工智能·计算机网络