回归(maskrcnn)

一、写在前面

虽然粉丝量很少 但是这是一个很好的平台 记录自己的历程 我看了一个很好的讲解视频 我记录一下操作过程4-maskrcnn源码修改方法哔哩哔哩bilibili 作者已经注销帐号了 但内容很好

二、maskrcnn介绍

Mask R-CNN(Mask Region-based Convolutional Neural Network)是一种用于目标检测和实例分割的深度学习模型。它是在 Faster R-CNN 的基础上扩展而来,结合了目标检测和语义分割的能力。与传统的目标检测模型相比,Mask R-CNN 不仅可以检测图像中的物体,还可以准确地分割出每个检测到的物体的像素级别的掩码。

灵活性: Mask R-CNN 是一种灵活的模型架构,可以轻松适应不同的任务和数据集。它可以用于检测和分割各种类型的物体,并且可以在不同的场景中进行有效的应用。

端到端训练: Mask R-CNN 可以进行端到端的训练,这意味着它可以同时学习目标检测和实例分割任务,而无需单独训练不同的模型。这简化了训练流程并提高了模型的效率。

三、如何做

(1)标注

下面是我标注完的结果 附上代码

复制代码
import os
import json
from PIL import Image, ImageDraw
​
# 创建新文件夹
os.makedirs('mask_images', exist_ok=True)
​
# 读取 JSON 文件
with open('plant_001.png.json', 'r') as f:
    data = json.load(f)
​
# 遍历每个形状
for idx, shape in enumerate(data['shapes']):
    label = shape['label']
    points = shape['points']
​
    # 创建新的图像
    image = Image.new('RGB', (data['imageWidth'], data['imageHeight']), (0, 0, 0))
    draw = ImageDraw.Draw(image)
​
    # 将点列表转换为元组
    xy = [(point[0], point[1]) for point in points]
​
    # 绘制多边形
    draw.polygon(xy, fill=(0, 245, 0))
​
    # 保存掩码图
    image.save(os.path.join('mask_images', label + '_mask_' + str(idx) + '.png'))
​

(2)训练 源码在这下载 Releases · matterport/Mask_RCNN (github.com)

需要对源码进行一定的修改

相关推荐
wwlsm_zql11 分钟前
江西移动5G赋能:电力行业智能化革新探秘
人工智能·5g
ChatPPT_YOO23 分钟前
告别手搓PPT:实测四款免费AI生成工具
人工智能·信息可视化·powerpoint·ai生成ppt·ppt制作
caiyueloveclamp24 分钟前
便宜好用AIPPT推荐TOP8【2025最新】
大数据·人工智能·powerpoint·ai生成ppt·aippt·免费会员
CHENKONG_CK35 分钟前
RFID 技术赋能汽车制造:发动机气缸缸体生产线智能化升级案例
人工智能·生产制造·rfid
葡萄城技术团队1 小时前
实战视角:为何专用小型语言模型(SLM)正成为企业 AI 选型新宠—与 LLM 的全面对比指南
大数据·人工智能·语言模型
AndrewHZ1 小时前
【图像处理基石】老照片修复入门:用技术唤醒沉睡的回忆
图像处理·人工智能·opencv·计算机视觉·cv·图像修复
AI_Auto2 小时前
MES系列-制造流程数字化的实现
大数据·人工智能·自动化·制造·数字化
DolphinDB智臾科技2 小时前
DolphinDB × 浙江大学合作新课——量化金融:理论与应用
人工智能·金融·浙江大学·量化金融·dolphindb
老赵聊算法、大模型备案2 小时前
广西 “人工智能 + 制造” 政策科普:十大支持方向与补贴明细
人工智能·aigc·制造
格林威2 小时前
AOI在PCB制造领域的核心应用
人工智能·数码相机·计算机视觉·视觉检测·制造·pcb·aoi