回归(maskrcnn)

一、写在前面

虽然粉丝量很少 但是这是一个很好的平台 记录自己的历程 我看了一个很好的讲解视频 我记录一下操作过程4-maskrcnn源码修改方法哔哩哔哩bilibili 作者已经注销帐号了 但内容很好

二、maskrcnn介绍

Mask R-CNN(Mask Region-based Convolutional Neural Network)是一种用于目标检测和实例分割的深度学习模型。它是在 Faster R-CNN 的基础上扩展而来,结合了目标检测和语义分割的能力。与传统的目标检测模型相比,Mask R-CNN 不仅可以检测图像中的物体,还可以准确地分割出每个检测到的物体的像素级别的掩码。

灵活性: Mask R-CNN 是一种灵活的模型架构,可以轻松适应不同的任务和数据集。它可以用于检测和分割各种类型的物体,并且可以在不同的场景中进行有效的应用。

端到端训练: Mask R-CNN 可以进行端到端的训练,这意味着它可以同时学习目标检测和实例分割任务,而无需单独训练不同的模型。这简化了训练流程并提高了模型的效率。

三、如何做

(1)标注

下面是我标注完的结果 附上代码

复制代码
import os
import json
from PIL import Image, ImageDraw
​
# 创建新文件夹
os.makedirs('mask_images', exist_ok=True)
​
# 读取 JSON 文件
with open('plant_001.png.json', 'r') as f:
    data = json.load(f)
​
# 遍历每个形状
for idx, shape in enumerate(data['shapes']):
    label = shape['label']
    points = shape['points']
​
    # 创建新的图像
    image = Image.new('RGB', (data['imageWidth'], data['imageHeight']), (0, 0, 0))
    draw = ImageDraw.Draw(image)
​
    # 将点列表转换为元组
    xy = [(point[0], point[1]) for point in points]
​
    # 绘制多边形
    draw.polygon(xy, fill=(0, 245, 0))
​
    # 保存掩码图
    image.save(os.path.join('mask_images', label + '_mask_' + str(idx) + '.png'))
​

(2)训练 源码在这下载 Releases · matterport/Mask_RCNN (github.com)

需要对源码进行一定的修改

相关推荐
澜舟孟子开源社区10 分钟前
“AI玩手机”原理揭秘:大模型驱动的移动端GUI智能体
人工智能·科技·agi
Mr.鱼18 分钟前
opencv undefined reference to `cv::noarray()‘ 。window系统配置opencv,找到opencv库,但连接不了
人工智能·opencv·计算机视觉
ATpiu21 分钟前
免费微调自己的大模型(llama-factory微调llama3.1-8b)
人工智能·机器学习·llama
凌虚(失业了求个工作)24 分钟前
RAG 示例:使用 langchain、Redis、llama.cpp 构建一个 kubernetes 知识库问答
人工智能·redis·python·langchain·llama
逝去的紫枫1 小时前
Python PIL:探索图像处理的无限可能
图像处理·人工智能·python
sp_fyf_20242 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-05
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
小火炉Q2 小时前
02 python基础 python解释器安装
人工智能·python·神经网络·机器学习·网络安全·自然语言处理
钰见梵星2 小时前
深度学习优化算法
人工智能·深度学习·算法
难念的码2 小时前
Skill 语言语法基础
人工智能·后端
dundunmm2 小时前
论文阅读:SIMBA: single-cell embedding along with features
论文阅读·人工智能·数据挖掘·embedding·生物信息·多组学细胞数据·单组学