合并单元格的excel文件转换成json数据格式

github地址: https://github.com/CodeWang-Ay/DataProcess

类型1

需求1:

类似于数据格式: https://blog.csdn.net/qq_44072222/article/details/120884158

目标json格式

{"位置": 1, "名称": "nba球员", "国家": "美国", "级别": "top10", "level2": [{"模块": "jordan", "球衣号码": 23, "球队名称": "公牛", "level3": [{"技术": "中投", "分数": 10}, {"技术": "三分", "分数": 5}, {"技术": "篮下", "分数": 8}, {"技术": "扣篮", "分数": 9}, {"技术": "忠诚度", "分数": 9}, {"技术": "人品", "分数": 6}]}, {"模块": "james", "球衣号码": "8、24", "球队名称": "骑士", "level3": [{"技术": "三分", "分数": 7}, {"技术": "篮下", "分数": 10}, {"技术": "扣篮", "分数": 9}, {"技术": "忠诚度", "分数": 5}]}, {"模块": "kobe", "球衣号码": "23、6", "球队名称": "湖人", "level3": [{"技术": "中投", "分数": 10}, {"技术": "忠诚度", "分数": 10}]}]}

转json格式链接: https://www.json.cn/#google_vignette

整体思路

数据格式相等于是一个三层的的树,一次遍历第一层,第二层, 第三层然后构建一颗树即可

第一层: 列范围 1-4

第二层: 列范围 5-7

第三层: 列范围 8-9

关键参数

表示三层

每次定位到第一层然后范围依次缩小取位置

col_level_index = [1, 5, 8, 10]                             # level1, level2, level3, level4

使用 openpyxl 工具包

openpyxl 中文文档: https://openpyxl-chinese-docs.readthedocs.io/zh-cn/latest/tutorial.html

解决代码:

import json

import openpyxl as xl
import pandas as pd

def get_merge_cell_by_no(sheet_, column_no):
    """
    :param sheet:   sheet对象
    :param column_no: 列索引 从1开始
    :return: 返回给定的索引下的所有合并单元格
    """
    merger_cell = []                            # 第一列合并的单元格
    merged_ranges = sheet_.merged_cells.ranges  # 获取当前工作表的所有合并区域列表
    for merged_cell_range in merged_ranges:
        if merged_cell_range.min_col == column_no and merged_cell_range.max_col == column_no:
            merger_cell.append(merged_cell_range)
    return sorted(merger_cell, key=lambda x: x.min_row)   # 排序返回 默认不排序


def get_merge_cell_by_special(sheet, start_row, end_row, start_col, end_col):
    """
    在特定范围内的合并单元格坐标
    :param sheet:
    :param start_row:
    :param end_row:
    :param start_col:
    :param end_col:
    :return:
    """
    merger_cell = []  # 第一列合并的单元格
    merged_ranges = sheet.merged_cells.ranges  # 获取当前工作表的所有合并区域列表
    for merged_cell_range in merged_ranges:
        up = merged_cell_range.min_row >= start_row
        down = merged_cell_range.max_row <= end_row
        left = merged_cell_range.min_col >= start_col
        right = merged_cell_range.max_col <= end_col
        if up and down and left and right:
            merger_cell.append(merged_cell_range)
    return sorted(merger_cell, key=lambda x: x.min_row)   # 排序返回 默认不排序

def get_filed_by_row_id(sheet_, keys, row_id, col_level_index):
    """
    get_filed_by_row_id   通过行id得到所有的json
    """
    # for row_id in row_list:
    filed_json = {}
    for row in sheet_.iter_rows(min_row=row_id, max_row=row_id, min_col=col_level_index[2], max_col=col_level_index[3], values_only=True):
        filed_json = get_dict_by_list(keys, row)
        # print(row)
    return filed_json


def get_dict_by_list(keys, values):
    """
    get_dict_by_list
    """
    data_dict = {}
    for key, value in zip(keys, values):
        data_dict[key] = value
    return data_dict

def save_jsonline_json(json_list, target_path):
    """
    json_list ---> jsonline
    :param json_list:
    :param target_path:
    :return:
    """
    with open(target_path, 'w', encoding="utf-8") as json_file:
        for item in json_list:
            json.dump(item, json_file, ensure_ascii=False)
            json_file.write("\n")
    print("Json列表已经保存到 {} 文件中。 每一行为一个json对象".format(target_path))

def excel_to_json_tree_e2e(sheet_, col_level_index):
    alphabet = " ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    level_merge_list = get_merge_cell_by_no(sheet_, col_level_index[0])  # 一级逻辑关系所有的列\
    json_list = []

    for index_level1, merge_level1 in enumerate(level_merge_list):
        start_row_level1 = merge_level1.min_row
        end_row_level1 = merge_level1.max_row
        level1_map = {}
        for col in range(col_level_index[0], col_level_index[1]):  # 列A是1,列D是4
            key = sheet_[alphabet[col] + str(1)].value
            cell_ref = sheet_[alphabet[col] + str(start_row_level1)].value  # 因为第二行,所以+1
            level1_map[key] = cell_ref      # 第一个阶段结束

        level1_map["level2"] = []
        level2_merge_list = get_merge_cell_by_special(sheet_, start_row_level1, end_row_level1,
                                                           col_level_index[1], col_level_index[1])
        level2_list = []
        for index_level2, merge_cell_level2 in enumerate(level2_merge_list):
            start_row_level2 = merge_cell_level2.min_row
            end_row_level2 = merge_cell_level2.max_row
            level2_list.append([i for i in range(start_row_level2, end_row_level2 + 1)])

            level2_map = {}
            for col in range(col_level_index[1], col_level_index[2]):  # 列A是1,列D是4
                key = sheet_[alphabet[col] + str(1)].value
                cell_ref = sheet_[alphabet[col] + str(start_row_level2)].value  # 因为第二行,所以+1
                level2_map[key] = cell_ref  # 第一个阶段结束

            column_name_list = []
            for col in range(col_level_index[2], col_level_index[3]):  # 列A是1,列D是4
                key = sheet_[alphabet[col] + str(1)].value
                column_name_list.append(key)

            level2_map["level3"] = []
            for row_id in range(start_row_level2, end_row_level2+1):
                current_filed_json = get_filed_by_row_id(sheet_, column_name_list, row_id, col_level_index)
                level2_map["level3"].append(current_filed_json)
            level1_map["level2"].append(level2_map)
        json_list.append(level1_map)

    return json_list


if __name__ == '__main__':
    excel_file = "excel/merge_new.xlsx"
    output_path = "output/nba_json.json"
    wb = xl.load_workbook(excel_file)
    sheet = wb["nba"]
    col_level_index = [1, 5, 8, 10]                             # level1, level2, level3, level4
    json_list = excel_to_json_tree_e2e(sheet, col_level_index)
    save_jsonline_json(json_list, output_path)

类型2

需求2:

转成:

数据格式相等于是一个三层的的树,一次遍历第一层,第二层, 第三层然后构建一颗树即可

第一层: 列范围 H

第二层: 列范围 I

第三层: 列范围 J

第四层: 列范围 KLMN

关键参数

每次定位到第一层然后范围依次缩小取位置

{"source": "北京时间3月30日,26届Cubal东南赛区决赛落幕,卫冕冠军广东工业大学66-65险胜宁波大学,时隔6年再次夺得东南王!广工首发5人全部得分上双,宁大三分15中2成输球关键。\n", "label": {"relation": "且", "conditions": [{"relation": "或", "conditions": [{"relation": "且", "conditions": [{"description": "最高速度", "option": "等于", "requirement": "210km/h"}, {"description": "车身重量", "option": "等于", "requirement": "1980kg"}]}, {"relation": "且", "conditions": [{"description": "最高速度", "option": "等于", "requirement": "265km/h"}, {"description": "车身重量", "option": "等于", "requirement": "2090kg"}]}, {"relation": "且", "conditions": [{"description": "最高速度", "option": "等于", "requirement": "265km/h"}, {"description": "车身重量", "option": "等于", "requirement": "2205kg"}]}]}, {"description": "车载智能系统", "option": "等于", "requirement": "澎湃os"}, {"description": "车身颜色", "option": "等于", "requirement": "橙、紫、绿、藏青、黑色"}, {"relation": "或", "conditions": [{"description": "电池类型", "option": "等于", "requirement": "磷酸铁锂电池"}, {"description": "电池类型", "option": "等于", "requirement": "三元锂电池"}]}]}}

解决代码:

import openpyxl as xl
import json
import itertools
import copy


def get_merge_cell_by_no(sheet_, column_no):
    """
    :param sheet:
    :param column_no:
    :return:
    """
    merger_cell = []                            # 第一列合并的单元格
    merged_ranges = sheet_.merged_cells.ranges  # 获取当前工作表的所有合并区域列表
    for merged_cell_range in merged_ranges:
        if merged_cell_range.min_col == column_no and merged_cell_range.max_col == column_no:
            merger_cell.append(merged_cell_range)
    return sorted(merger_cell, key=lambda x: x.min_row)   # 排序返回 默认不排序


def get_merge_cell_by_special(sheet, start_row, end_row, start_col, end_col):
    """
    在特定范围内的合并单元格坐标
    :param sheet:
    :param start_row:
    :param end_row:
    :param start_col:
    :param end_col:
    :return:
    """
    merger_cell = []  # 第一列合并的单元格
    merged_ranges = sheet.merged_cells.ranges  # 获取当前工作表的所有合并区域列表
    for merged_cell_range in merged_ranges:
        up = merged_cell_range.min_row >= start_row
        down = merged_cell_range.max_row <= end_row
        left = merged_cell_range.min_col >= start_col
        right = merged_cell_range.max_col <= end_col
        if up and down and left and right:
            merger_cell.append(merged_cell_range)
    return sorted(merger_cell, key=lambda x: x.min_row)   # 排序返回 默认不排序


def get_dict_by_list(keys, values):
    """
    get_dict_by_list
    """
    data_dict = {}
    for key, value in zip(keys, values):
        data_dict[key] = value
    return data_dict


def get_filed_by_row_id(sheet_, keys, row_id, use_align):
    """
    get_filed_by_row_id   通过行id得到所有的json
    """
    # for row_id in row_list:
    filed_json = {}
    for row in sheet_.iter_rows(min_row=row_id, max_row=row_id, min_col=11, max_col=14, values_only=True):
        if use_align:
            row = [row[0], row[2], row[3]]  # 取数配置那一列不要
        else:
            row = [row[1], row[2], row[3]]      # 取数配置那一列不要
        filed_json = get_dict_by_list(keys, row)
        # print(row)
    return filed_json


def custom_sort_key(item):
    """
    合并单元格排序
    """
    if isinstance(item, list):
        return item[0]
    else:
        return item


def excel_to_json_tree_e2e(sheet_, column_name_list, logic_level, level1_col_index, isvalid_col, use_align):
    """
    excel_to_json_tree. 读取excel文件,转换成json树结构
    :param sheet_:
    :param column_name_list: key_list
    :param logic_level: summary, 一级, 二级, 三级列名
    :param level1_col_index: 第一级逻辑关系的索引 8
    :param isvalid_col: 是否有效列, 有效我们才进行转化
    :return:
    """
    level_merge_list = get_merge_cell_by_no(sheet_, level1_col_index)  # 一级逻辑关系所有的列
    e2e_json_list = []
    pre_json_list = []
    post_json_list = []
    relation_key = "relation"
    condition_key = "conditions"
    for index_level1, merge_cell_level1 in enumerate(level_merge_list):
        e2e_json = {}
        pre_json_total = {}
        post_json_label = {}
        post_json_total = {}

        start_row_level1 = merge_cell_level1.min_row
        end_row_level1 = merge_cell_level1.max_row
        level1_merge = [i for i in range(start_row_level1, end_row_level1 + 1)]  # level的所有列索引

        summary_content = sheet_[logic_level[0] + str(start_row_level1)].value  # G2 内容用于构建 source: target使用

        level1_json = {}
        level1_logic = sheet_[logic_level[1] + str(start_row_level1)].value  # H2
        level1_json[relation_key] = level1_logic        # relation : logic
        level1_json[condition_key] = []                 #
        level1_json_pre = copy.deepcopy(level1_json)    # 拷贝
        isvalid = sheet_[isvalid_col + str(start_row_level1)].value     # F2 验证有效字段是否有效 无效则直接跳过
        if isvalid != 1:  # 验证是否有效字段
            continue
        # post
        post_json_label[condition_key] = []
        for row_id in level1_merge:
            current_post_json = get_filed_by_row_id(sheet_, column_name_list, row_id, use_align)
            post_json_label[condition_key].append(current_post_json)

        level2_merge = []
        level2_merge_cell_list = get_merge_cell_by_special(sheet_, start_row_level1, end_row_level1,
                                                           level1_col_index + 1, level1_col_index + 1)
        for index_level2, merge_cell_level2 in enumerate(level2_merge_cell_list):

            start_row_level2 = merge_cell_level2.min_row
            end_row_level2 = merge_cell_level2.max_row
            level2_merge.append([i for i in range(start_row_level2, end_row_level2 + 1)])

        level2_merge_one_dimension = list(itertools.chain.from_iterable(level2_merge))
        level2_single = [i for i in level1_merge if i not in level2_merge_one_dimension]
        level2 = level2_merge + level2_single
        level2 = sorted(level2, key=custom_sort_key)  # 为了保证顺序


        for element in level2:
            if type(element) is int:
                # 没有二级逻辑关系
                row_id = element
                current_filed_json = get_filed_by_row_id(sheet_, column_name_list, row_id, use_align)
                level1_json[condition_key].append(current_filed_json)
                value = current_filed_json[column_name_list[0]]  # pre dataset
                level1_json_pre[condition_key].append(value)

            elif type(element) is list:
                # 二级逻辑关系
                current_level2_merge = element
                start = element[0]
                end = element[-1]
                level3_merge_list = get_merge_cell_by_special(sheet_, start, end,
                                                              level1_col_index + 2, level1_col_index + 2)
                level2_json = {}
                level2_logic = sheet_[logic_level[2] + str(start)].value
                level2_json[relation_key] = level2_logic
                level2_json[condition_key] = []
                level2_json_pre = copy.deepcopy(level2_json)
                if len(level3_merge_list) == 0:
                    # 没有三级逻辑关系
                    for row_id in element:
                        current_filed_json = get_filed_by_row_id(sheet_, column_name_list, row_id, use_align)
                        level2_json[condition_key].append(current_filed_json)
                        level2_json_pre[condition_key].append(current_filed_json[column_name_list[0]])
                else:
                    # 有三级逻辑关系
                    level3_merge = []
                    for merge_cell_level3 in level3_merge_list:
                        start_row_level3 = merge_cell_level3.min_row
                        end_row_level3 = merge_cell_level3.max_row
                        level3_merge.append([i for i in range(start_row_level3, end_row_level3 + 1)])
                    level3_merge_one_dimension = list(itertools.chain.from_iterable(level3_merge))
                    level3_single = [i for i in current_level2_merge if i not in level3_merge_one_dimension]
                    level3 = level3_single + level3_merge
                    level3 = sorted(level3, key=custom_sort_key)

                    for element_level3 in level3:
                        if type(element_level3) is int:
                            current_filed_json = get_filed_by_row_id(sheet_, column_name_list, element_level3, use_align)
                            level2_json[condition_key].append(current_filed_json)
                            level2_json_pre[condition_key].append(current_filed_json[column_name_list[0]])
                        elif type(element_level3) is list:
                            level3_start = element_level3[0]
                            level3_end = element_level3[-1]
                            level3_json = {}
                            level3_logic = sheet_[logic_level[3] + str(level3_start)].value
                            level3_json[relation_key] = level3_logic
                            level3_json[condition_key] = []
                            level3_json_pre = copy.deepcopy(level3_json)
                            for row_id in element_level3:
                                current_filed_json = get_filed_by_row_id(sheet_, column_name_list, row_id, use_align)

                                level3_json[condition_key].append(current_filed_json)
                                field = current_filed_json[column_name_list[0]]
                                level3_json_pre[condition_key].append(field)
                            level2_json[condition_key].append(level3_json)
                            level2_json_pre[condition_key].append(level3_json_pre)
                level1_json[condition_key].append(level2_json)
                level1_json_pre[condition_key].append(level2_json_pre)

        e2e_json["source"] = summary_content
        e2e_json["label"] = level1_json
        pre_json_total["source"] = summary_content
        pre_json_total["label"] = level1_json_pre
        post_json_total["source"] = summary_content
        post_json_total["label"] = post_json_label
        # print(json.dumps(e2e_json, ensure_ascii=False))
        # print(json.dumps(pre_json_total, ensure_ascii=False))
        # print(json.dumps(post_json_total, ensure_ascii=False))
        e2e_json_list.append(e2e_json)
        pre_json_list.append(pre_json_total)
        post_json_list.append(post_json_total)
    return e2e_json_list, pre_json_list, post_json_list


def save_jsonline_json(json_list, target_path):
    """
    json_list ---> jsonline
    :param json_list:
    :param target_path:
    :return:
    """
    with open(target_path, 'w', encoding="utf-8") as json_file:
        for item in json_list:
            json.dump(item, json_file, ensure_ascii=False)
            json_file.write("\n")
    print("Json列表已经保存到 {} 文件中。 每一行为一个json对象".format(target_path))


# 按顺序读取
"""
openpyxl 中文文档
https://openpyxl-chinese-docs.readthedocs.io/zh-cn/latest/tutorial.html 
"""

if __name__ == "__main__":
    source_file = "excel/merge_new.xlsx"            # excel path
    wb = xl.load_workbook(source_file)
    sheet = wb["news"]                        # 子表对象
    key_name_list = ["description", "option", "requirement"]
    target_e2e_path =  "output/train_e2e.json"
    target_pre_path =  "output/train_pre.json"
    target_post_path = "output/train_post.json"
    target_logic_level = ["G", "H", "I", "J"]    # 逻辑关系所对应的列
    valid_col = "F"                              # 是否有效列的字母
    align_flag = 0                               # 是否使用对齐列
    e2e_list, pre_list, post_list = excel_to_json_tree_e2e(sheet, key_name_list, target_logic_level,
                                                           8, valid_col, align_flag)
    # json_list = excel_to_json_tree_post(sheet, key_name_list, target_logic_level, 8, isvalid_col)
    save_jsonline_json(e2e_list, target_e2e_path)
    save_jsonline_json(pre_list, target_pre_path)
    save_jsonline_json(post_list, target_post_path)
相关推荐
Json_181790144804 小时前
An In-depth Look into the 1688 Product Details Data API Interface
大数据·json
Python大数据分析@4 小时前
python操作CSV和excel,如何来做?
开发语言·python·excel
John.liu_Test5 小时前
js下载excel示例demo
前端·javascript·excel
哟哟耶耶5 小时前
js-将JavaScript对象或值转换为JSON字符串 JSON.stringify(this.SelectDataListCourse)
前端·javascript·json
ruleslol7 小时前
VBA02-初识宏——EXCEL录像机
excel·vba
IT铺子7 小时前
制定Excel使用规范和指导,提升数据处理的效率和准确性,减少错误和数据丢失的风险
excel
是萝卜干呀7 小时前
Backend - Python 爬取网页数据并保存在Excel文件中
python·excel·table·xlwt·爬取网页数据
努力的家伙是不讨厌的9 小时前
解析json导出csv或者直接入库
开发语言·python·json
神奇夜光杯13 小时前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
Mephisto.java13 小时前
【大数据学习 | kafka高级部分】kafka的优化参数整理
大数据·sql·oracle·kafka·json·database