用 Python 批量处理 Excel:从重复值清洗到数据可视化

引言

日常工作中,经常需要处理多份 Excel 表格:比如合并销售数据、清洗重复的用户信息,最后生成可视化图表。手动操作不仅效率低,还容易出错。这篇文章分享一套 Python 自动化流程,用pandasmatplotlib搞定从数据清洗到可视化的全流程,附完整代码和避坑指南。

一、环境准备

需要安装的库:

bash 复制代码
pip install pandas openpyxl matplotlib  # openpyxl用于读取xlsx格式

避坑点:如果 Excel 是.xls格式,需额外安装xlrd==1.2.0(高版本不支持 xls)。

二、核心步骤(附代码)
1. 读取并合并多份 Excel 文件

假设文件夹data/下有 3 个销售数据文件(sale1.xlsxsale2.xlsxsale3.xlsx),结构相同(含 "日期""产品""销售额" 列)。

python 复制代码
import pandas as pd
import os

# 读取文件夹下所有Excel
file_dir = "data/"
all_data = []
for file in os.listdir(file_dir):
    if file.endswith(".xlsx"):
        df = pd.read_excel(os.path.join(file_dir, file))
        all_data.append(df)

# 合并为一个DataFrame
merged_df = pd.concat(all_data, ignore_index=True)
print(f"合并后共{len(merged_df)}行数据")
2. 清洗重复值

目标:删除 "产品 + 日期" 完全重复的行(避免重复统计)。

python 复制代码
# 查看重复值数量
print(f"重复值行数:{merged_df.duplicated(subset=['产品', '日期']).sum()}")

# 删除重复值(保留第一行)
cleaned_df = merged_df.drop_duplicates(subset=['产品', '日期'], keep='first')
3. 缺失值处理

如果 "销售额" 列有缺失,用该产品的平均值填充(比直接删除更合理):

python 复制代码
# 按"产品"分组,用组内平均值填充缺失值
cleaned_df['销售额'] = cleaned_df.groupby('产品')['销售额'].transform(
    lambda x: x.fillna(x.mean())
)
4. 数据可视化(生成销量趋势图)

以 "产品 A" 为例,绘制月度销售额折线图:

python 复制代码
import matplotlib.pyplot as plt

# 设置中文显示(避免乱码)
plt.rcParams["font.family"] = ["SimHei", "WenQuanYi Micro Hei", "Heiti TC"]

# 筛选产品A的数据,按月份分组求和
product_a = cleaned_df[cleaned_df['产品'] == '产品A']
product_a['月份'] = product_a['日期'].dt.to_period('M')  # 提取月份
monthly_sales = product_a.groupby('月份')['销售额'].sum()

# 绘图
monthly_sales.plot(kind='line', figsize=(10, 6))
plt.title('产品A月度销售额趋势')
plt.xlabel('月份')
plt.ylabel('销售额(元)')
plt.grid(alpha=0.3)
plt.savefig('sales_trend.png', dpi=300)  # 保存图片
plt.show()
三、完整代码总结

将上述步骤整合为一个函数,方便复用:

python 复制代码
def process_excel(file_dir, target_product):
    # 1. 读取合并数据(代码同上)
    # 2. 清洗重复值(代码同上)
    # 3. 处理缺失值(代码同上)
    # 4. 可视化(代码同上)
    return cleaned_df  # 返回处理后的DataFrame

# 调用示例
df = process_excel("data/", "产品A")
四、扩展思考
  • 如果数据量超过 10 万行,建议用dask替代pandas,避免内存溢出;
  • 可视化也可以尝试seaborn,图表更美观(如sns.lineplot())。
  • 你在处理 Excel 时遇到过哪些棘手问题?欢迎留言分享你的解决方案~
相关推荐
0思必得02 分钟前
[Web自动化] Selenium处理动态网页
前端·爬虫·python·selenium·自动化
韩立学长9 分钟前
【开题答辩实录分享】以《基于Python的大学超市仓储信息管理系统的设计与实现》为例进行选题答辩实录分享
开发语言·python
qq_1927798712 分钟前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
u01092727130 分钟前
使用Plotly创建交互式图表
jvm·数据库·python
爱学习的阿磊31 分钟前
Python GUI开发:Tkinter入门教程
jvm·数据库·python
Imm7771 小时前
中国知名的车膜品牌推荐几家
人工智能·python
tudficdew1 小时前
实战:用Python分析某电商销售数据
jvm·数据库·python
sjjhd6522 小时前
Python日志记录(Logging)最佳实践
jvm·数据库·python
2301_821369612 小时前
用Python生成艺术:分形与算法绘图
jvm·数据库·python
机 _ 长2 小时前
YOLO26 改进 | 基于特征蒸馏 | 知识蒸馏 (Response & Feature-based Distillation)
python·深度学习·机器学习