直观易用的大模型开发框架LangChain,你会了没?

目前LangChain框架在集团大模型接入手册中的学习案例有限,为了让大家可以快速系统地了解LangChain大模型框架并开发,产出此文章。本文章包含了LangChain的简介、基本组件和可跑的代码案例(包含Embedding、Completion、Chat三种功能模型声明)。读完此文章,您可利用集团申请的api key+LangChain框架进行快速开发,体验大语言模型的魅力。

一、简介

LangChain 作为一个大语言模型(LLM)集成框架,旨在简化使用大语言模型的开发过程,包括如下组件:

LangChain框架优点:

1.多模型支持:LangChain 支持多种流行的预训练语言模型,如 OpenAI GPT-3、Hugging Face Transformers 等,为用户提供了广泛的选择。

2.易于集成:LangChain 提供了简单直观的API,可以轻松集成到现有的项目和工作流中,无需深入了解底层模型细节。

3.强大的工具和组件:LangChain 内置了多种工具和组件,如文档加载器、文本转换器、提示词模板等,帮助开发者处理复杂的语言任务。

4.可扩展性:LangChain 允许开发者通过自定义工具和组件来扩展框架的功能,以适应特定的应用需求。

5.性能优化:LangChain 考虑了性能优化,支持高效地处理大量数据和请求,适合构建高性能的语言处理应用。

6.Python 和 Node.js 支持:开发者可以使用这两种流行的编程语言来构建和部署LangChain应用程序。

由于支持 Node.js ,前端大佬们可使用Javascript语言编程从而快速利用大模型能力,无需了解底层大模型细节。同时也支持JAVA开发,后端大佬同样适用。

本篇文章案例聚焦Python语言开发。


二、基本组件

•Prompt【可选】

◦告知LLM内system服从什么角色

◦占位符:设置{input}以便动态填补后续用户输入

•Retriever【可选】

◦LangChain一大常见应用场景就是RAG(Retrieval-Augmented Generation),RAG 为了解决LLM中语料的通用和时间问题,通过增加最新的或者垂类场景下的外部语料,Embedding化后存入向量数据库,然后模型从外部语料中寻找相似语料辅助回复

•Models

◦可做 Embedding化,语句补全,对话等

支持的模型选择,OpenAI为例

•Parser【可选】

◦StringParser,JsonParser 等

◦将模型输出的AIMessage转化为string, json等易读格式

上述介绍了Langchain开发中常见的components,接下来将通过一简单案例将上述组件串起来,让大家更熟悉Langchain中的组件及接口调用。


三、小试牛刀

python 复制代码
import os
# gpt 网关调用
os.environ["OPENAI_API_KEY"] = "{申请的集团api key}"
os.environ["OPENAI_API_BASE"] = "{您的url}"

import openai

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())

openai.api_key = os.environ['OPENAI_API_KEY']

from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema.output_parser import StrOutputParser

prompt = ChatPromptTemplate.from_template(
    "tell me a short joke about {topic}"
)
model = ChatOpenAI()
output_parser = StrOutputParser()

chain = prompt | model | output_parser

chain.invoke({"topic": "bears"})

输出:

swift 复制代码
"Why don't bears wear shoes?\nBecause they have bear feet!"

其中 chain = prompt | model | output_parser 按照数据传输顺序将上述声明的 prompt template、大语言模型、输出格式串联起来(Chain),逻辑清晰直接。

代码案例:调用Embedding、Completion、Chat Model

•将文本转化为Embedding : langchain_community.embeddings <-> OpenAIEmbeddings

ini 复制代码
from langchain_community.embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(
    model="text-embedding-ada-002",
    openai_api_key=os.environ["OPENAI_API_KEY"],
    openai_api_base=os.environ["OPENAI_API_BASE"]
)

text = "text"
query_result = embeddings.embed_query(text)

•文本补全:langchain_community.llms <-> OpenAI completion

ini 复制代码
from langchain_community.llms import OpenAI

llm = OpenAI(
    model_name='gpt-35-turbo-instruct-0914',
    openai_api_key=os.environ["OPENAI_API_KEY"],
    base_url=base_url,
    temperature=0
)

llm.invoke("I have an order with order number 2022ABCDE, but I haven't received it yet. Could you please help me check it?")

•对话模型:langchain_openai <-> ChatOpenAI

arduino 复制代码
from langchain_openai import ChatOpenAI

model = ChatOpenAI(model_name="gpt-35-turbo-1106") # "glm-4"
model.invoke("你好,你是智谱吗?")

四、总结

LangChain作为一个使用流程直观的大模型开发框架,掌握它优势多多。希望您可以通过上述内容入门并熟悉LangChain框架,欢迎多多交流!

相关推荐
数据智能老司机1 天前
使用 ChatGPT 构建网站——创建并部署你的第一个网页
chatgpt·vibecoding
陈敬雷-充电了么-CEO兼CTO2 天前
深度拆解判别式推荐大模型RankGPT!生成式精排落地提速94.8%,冷启动效果飙升,还解决了传统推荐3大痛点
大数据·人工智能·机器学习·chatgpt·大模型·推荐算法·agi
有才不一定有德2 天前
多代理系统架构:Supervisor 与 Swarm 架构详解
人工智能·chatgpt·架构·系统架构
不老刘2 天前
《生成式AI消费级应用Top 100——第五版》| a16z
人工智能·ai·chatgpt·a16z
MarkHD5 天前
AI提示词30天入门培训计划
人工智能·chatgpt
溯源0065 天前
【deepseek问答记录】:chatGPT的参数数量和上下文长度有关系吗?
人工智能·深度学习·chatgpt
深度学习机器7 天前
aisuite:统一的大模型SDK,简化LLM开发流程
chatgpt·llm·openai
W-GEO7 天前
GEO优化策略:AI搜索引擎的“动态响应”与GEO优化公司的实时优化能力
大数据·人工智能·chatgpt
GEO_JYB7 天前
2025生成式引擎优化(GEO)技术研究报告:技术演进、行业应用与服务商能力选择指南
人工智能·chatgpt
It_张8 天前
Building Systems with the ChatGPT API 使用 ChatGPT API 搭建系统(第五章学习笔记及总结)
笔记·学习·chatgpt