【Locust分布式压力测试】

Locust分布式压力测试

https://docs.locust.io/en/stable/running-distributed.html

Distributed load generation

A single process running Locust can simulate a reasonably high throughput. For a simple test plan and small payloads it can make more than a thousand requests per second, possibly over ten thousand if you use FastHttpUser.

But if your test plan is complex or you want to run even more load, you'll need to scale out to multiple processes, maybe even multiple machines. Fortunately, Locust supports distributed runs out of the box.

To do this, you start one instance of Locust with the --master flag and one or more using the --worker flag. The master instance runs Locust's web interface, and tells the workers when to spawn/stop Users. The worker instances run your Users and send statistics back to the master. The master instance doesn't run any Users itself.

To simplify startup, you can use the --processes flag. It will launch a master process and the specified number of worker processes. It can also be used in combination with --worker, then it will only launch workers. This feature relies on fork() so it doesn't work on Windows.

分布式发电

运行Locust的单个进程可以模拟相当高的吞吐量。对于一个简单的测试计划和较小的有效负载,它每秒可以发出超过一千个请求,如果使用fastttpuser,则可能超过一万个请求。

但是如果您的测试计划很复杂,或者您想要运行更多的负载,那么您将需要扩展到多个进程,甚至可能是多台机器。幸运的是,Locust支持开箱即用的分布式运行。

为此,使用------master标志启动一个Locust实例,使用------worker标志启动一个或多个Locust实例。主实例运行Locust的web界面,并告诉worker何时生成/停止user。工作实例运行用户并将统计数据发送回主实例。主实例本身不运行任何Users。

为了简化启动,可以使用------processes标志。它将启动一个主进程和指定数量的工作进程。它也可以与------worker结合使用,那么它只会启动worker。此功能依赖于fork(),因此在Windows上不起作用。

Because Python cannot fully utilize more than one core per process (see GIL), you need to run one worker instance per processor core in order to have access to all your computing power.

由于Python不能充分利用每个进程的多个内核(参见GIL),因此您需要为每个处理器内核运行一个工作实例,以便访问所有的计算能力。

There is almost no limit to how many Users you can run per worker. Locust/gevent can run thousands or even tens of thousands of Users per process just fine, as long as their total request rate (RPS) is not too high.

对于每个工作线程可以运行多少个用户,几乎没有限制。只要它们的总请求率(RPS)不太高,蝗虫/gevent可以在每个进程中运行数千甚至数万个用户。

If Locust is getting close to running out of CPU resources, it will log a warning. If there is no warning but you are still unable to generate the expected load, then the problem must be something else.

如果Locust即将耗尽CPU资源,它将记录一个警告。如果没有警告,但您仍然无法生成预期的负载,那么问题一定是别的。

**

locust spawn设置多少合适

**

Locust的并发用户数量是通过设置master节点上的--num-users和--spawn-rate参数来控制的。--num-users表示总的模拟用户数,--spawn-rate表示每秒启动的用户数。

设置多少个用户数和启动速率合适取决于几个因素:

复制代码
系统资源:确保你的机器有足够的CPU和内存来支持更多的并发用户。

目标系统:了解你测试的服务或系统的处理能力,确保不会超出其处理限制。

测试目标:确定你想要模拟的用户负载类型和数量。

一般来说,设置合适的用户数和启动速率可以遵循以下步骤:

复制代码
开始时设置较低的用户数和较高的启动速率,观察系统性能。

当达到系统瓶颈,例如响应时间增加、错误率上升时,减少用户数或减慢启动速率。

根据测试结果,逐渐增加用户数或启动速率,直到达到预期的性能指标或者资源使用达到瓶颈。

下面是一个示例命令,用于设置总共1000个用户,每秒启动200个用户:

复制代码
locust --no-web --host=http://example.com --num-users=1000 --spawn-rate=200

这里使用了--no-web参数来表示不启动Web界面,直接在命令行运行测试。如果你想要使用Web界面,可以不加这个参数,并且在不指定用户数和启动速率的情况下直接启动Locust,然后在Web界面中进行配置。

相关推荐
LDG_AGI41 分钟前
【推荐系统】深度学习训练框架(二十一):DistributedCheckPoint(DCP) — PyTorch分布式模型存储与加载
pytorch·分布式·深度学习
LDG_AGI1 小时前
【推荐系统】深度学习训练框架(二十三):TorchRec端到端超大规模模型分布式训练+推理实战
人工智能·分布式·深度学习·机器学习·数据挖掘·推荐算法
清晓粼溪1 小时前
SpringCloud-05-Micrometer Tracing+ZipKin分布式链路追踪
分布式·spring·spring cloud
独自破碎E1 小时前
聊聊RabbitMQ
分布式·rabbitmq
小股虫1 小时前
缓存攻防战:在增长中台设计一套高效且安全的缓存体系
java·分布式·安全·缓存·微服务·架构
2503_946971862 小时前
【FullStack/ZeroDay】2026年度全栈魔法架构与分布式恶意节点清除基准索引 (Benchmark Index)
分布式·网络安全·架构·系统架构·区块链·数据集·全栈开发
回家路上绕了弯2 小时前
Resilience4j全面指南:轻量级熔断限流框架的实战与落地
分布式·后端
LDG_AGI2 小时前
【推荐系统】深度学习训练框架(二十二):PyTorch2.5 + TorchRec1.0超大规模模型分布式推理实战
人工智能·分布式·深度学习
2503_946971863 小时前
【SystemDesign/HA】2025年度高可用分布式仿真节点与预测模型容灾演练配置 (Disaster Recovery Config)
大数据·分布式·算法·系统架构·数据集
linux修理工3 小时前
kafka topic consumer
分布式·kafka·linq