哪些原因会影响视觉检测设备的精度?——康耐德机器视觉

随着自动化领域的不断革新,机器视觉技术的应用变得日益广泛。在自动化制造领域,机器视觉系统通过测量和检测工件的尺寸参数,如长度、圆形度、角度、弧线以及区域等,为生产线提供了巨大的便利。这些系统不仅能够实时获取产品的精确尺寸数据,还能够在生产线上即时对产品进行判定和分类。

机器视觉检测系统的优势在于其低成本、高精度和易于安装的特点。结合功能强大的视觉软件,这些系统变得非常灵活和方便,可以轻松调整以适应不同的应用需求。此外,这些系统还能够存储测量数据,为后续的统计分析提供有力的支持。因此,机器视觉检测系统已成为许多行业中的首选解决方案。

然而,在实际应用中,一些客户在追求高精度检测时遇到了挑战。例如,对于加工零件的外形尺寸和内外径的测量,要求达到10um的精度。尽管许多配置选择了500万像素的相机,但在实际测试中,很难达到这一精度。这主要是由于以下几个方面的原因:

  1. 相机的选择:为了降低成本,一些客户选择使用CMOS相机。然而,这种相机在拍摄物体边缘时可能会遇到对比度差和噪声大的问题,从而影响软件测量的准确性。因此,推荐使用CCD芯片相机以获得更好的测量效果。
  2. 镜头的选择:由于机械零部件的多样性和复杂性,一些普通镜头可能难以捕捉到零部件的某些细节,如内壁等。这增加了软件处理的难度,并对图像处理算法提出了更高的要求。
  3. 光源的选择:一些客户可能会选择普通的背光源来降低成本。然而,在高精度检测中,背光源可能会产生衍射现象,导致测量精度下降。此外,光源亮度的变化也会对图像中的亮暗产生较大影响。

如果您在工业生产线中需要机器视觉系统用于产品质量检测,我们康耐德智能为您提供专业的咨询和方案设计服务。我们会根据您的实际需求,从专业的角度出发,为您提供合适的解决方案。

相关推荐
明朝百晓生1 小时前
强化学习【Monte Carlo Learning][MC Basic 算法]
人工智能·机器学习
云知谷5 小时前
【C++基本功】C++适合做什么,哪些领域适合哪些领域不适合?
c语言·开发语言·c++·人工智能·团队开发
rit84324996 小时前
基于MATLAB实现基于距离的离群点检测算法
人工智能·算法·matlab
初学小刘7 小时前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
递归不收敛7 小时前
大语言模型(LLM)入门笔记:嵌入向量与位置信息
人工智能·笔记·语言模型
之墨_8 小时前
【大语言模型】—— 自注意力机制及其变体(交叉注意力、因果注意力、多头注意力)的代码实现
人工智能·语言模型·自然语言处理
从孑开始9 小时前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine
涛涛讲AI9 小时前
一段音频多段字幕,让音频能够流畅自然对应字幕 AI生成视频,扣子生成剪映视频草稿
人工智能·音视频·语音识别
可触的未来,发芽的智生9 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
WWZZ20259 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam