哪些原因会影响视觉检测设备的精度?——康耐德机器视觉

随着自动化领域的不断革新,机器视觉技术的应用变得日益广泛。在自动化制造领域,机器视觉系统通过测量和检测工件的尺寸参数,如长度、圆形度、角度、弧线以及区域等,为生产线提供了巨大的便利。这些系统不仅能够实时获取产品的精确尺寸数据,还能够在生产线上即时对产品进行判定和分类。

机器视觉检测系统的优势在于其低成本、高精度和易于安装的特点。结合功能强大的视觉软件,这些系统变得非常灵活和方便,可以轻松调整以适应不同的应用需求。此外,这些系统还能够存储测量数据,为后续的统计分析提供有力的支持。因此,机器视觉检测系统已成为许多行业中的首选解决方案。

然而,在实际应用中,一些客户在追求高精度检测时遇到了挑战。例如,对于加工零件的外形尺寸和内外径的测量,要求达到10um的精度。尽管许多配置选择了500万像素的相机,但在实际测试中,很难达到这一精度。这主要是由于以下几个方面的原因:

  1. 相机的选择:为了降低成本,一些客户选择使用CMOS相机。然而,这种相机在拍摄物体边缘时可能会遇到对比度差和噪声大的问题,从而影响软件测量的准确性。因此,推荐使用CCD芯片相机以获得更好的测量效果。
  2. 镜头的选择:由于机械零部件的多样性和复杂性,一些普通镜头可能难以捕捉到零部件的某些细节,如内壁等。这增加了软件处理的难度,并对图像处理算法提出了更高的要求。
  3. 光源的选择:一些客户可能会选择普通的背光源来降低成本。然而,在高精度检测中,背光源可能会产生衍射现象,导致测量精度下降。此外,光源亮度的变化也会对图像中的亮暗产生较大影响。

如果您在工业生产线中需要机器视觉系统用于产品质量检测,我们康耐德智能为您提供专业的咨询和方案设计服务。我们会根据您的实际需求,从专业的角度出发,为您提供合适的解决方案。

相关推荐
东方不败之鸭梨的测试笔记4 小时前
测试工程师如何利用AI大模型?
人工智能
智能化咨询4 小时前
(68页PPT)埃森哲XX集团用户主数据治理项目汇报方案(附下载方式)
大数据·人工智能
说私域4 小时前
分享经济应用:以“开源链动2+1模式AI智能名片S2B2C商城小程序”为例
人工智能·小程序·开源
工业机器视觉设计和实现4 小时前
我的第三个cudnn程序(cifar10改cifar100)
人工智能·深度学习·机器学习
熊猫钓鱼>_>4 小时前
PyTorch深度学习框架入门浅析
人工智能·pytorch·深度学习·cnn·nlp·动态规划·微分
Altair澳汰尔4 小时前
成功案例丨仿真+AI技术为快消包装行业赋能提速:基于 AI 的轻量化设计节省数十亿美元
人工智能·ai·仿真·cae·消费品·hyperworks·轻量化设计
祝余Eleanor4 小时前
Day 31 类的定义和方法
开发语言·人工智能·python·机器学习
背心2块钱包邮4 小时前
第6节——微积分基本定理(Fundamental Theorem of Calculus,FTC)
人工智能·python·机器学习·matplotlib
也许是_4 小时前
大模型应用技术之提示词高阶技巧
人工智能
ShiMetaPi4 小时前
SAM(通用图像分割基础模型)丨基于BM1684X模型部署指南
人工智能·算法·ai·开源·bm1684x·算力盒子