哪些原因会影响视觉检测设备的精度?——康耐德机器视觉

随着自动化领域的不断革新,机器视觉技术的应用变得日益广泛。在自动化制造领域,机器视觉系统通过测量和检测工件的尺寸参数,如长度、圆形度、角度、弧线以及区域等,为生产线提供了巨大的便利。这些系统不仅能够实时获取产品的精确尺寸数据,还能够在生产线上即时对产品进行判定和分类。

机器视觉检测系统的优势在于其低成本、高精度和易于安装的特点。结合功能强大的视觉软件,这些系统变得非常灵活和方便,可以轻松调整以适应不同的应用需求。此外,这些系统还能够存储测量数据,为后续的统计分析提供有力的支持。因此,机器视觉检测系统已成为许多行业中的首选解决方案。

然而,在实际应用中,一些客户在追求高精度检测时遇到了挑战。例如,对于加工零件的外形尺寸和内外径的测量,要求达到10um的精度。尽管许多配置选择了500万像素的相机,但在实际测试中,很难达到这一精度。这主要是由于以下几个方面的原因:

  1. 相机的选择:为了降低成本,一些客户选择使用CMOS相机。然而,这种相机在拍摄物体边缘时可能会遇到对比度差和噪声大的问题,从而影响软件测量的准确性。因此,推荐使用CCD芯片相机以获得更好的测量效果。
  2. 镜头的选择:由于机械零部件的多样性和复杂性,一些普通镜头可能难以捕捉到零部件的某些细节,如内壁等。这增加了软件处理的难度,并对图像处理算法提出了更高的要求。
  3. 光源的选择:一些客户可能会选择普通的背光源来降低成本。然而,在高精度检测中,背光源可能会产生衍射现象,导致测量精度下降。此外,光源亮度的变化也会对图像中的亮暗产生较大影响。

如果您在工业生产线中需要机器视觉系统用于产品质量检测,我们康耐德智能为您提供专业的咨询和方案设计服务。我们会根据您的实际需求,从专业的角度出发,为您提供合适的解决方案。

相关推荐
昨日之日20062 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_2 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover2 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川3 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃5 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力7 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20217 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧38 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽8 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_8 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习