内存管理中的字节对齐算法

内存管理模块里,在内存块和内存池的分配时都需要用到字节对齐,今天来分析一下字节对齐的实现方法

基本实现

首先看align的基本的实现:

使用的时候:

ini 复制代码
block_size = RT_ALIGN(block_size, RT_ALIGN_SIZE);

宏定义是这样的

scss 复制代码
#define RT_ALIGN_SIZE   4
#define RT_ALIGN(size, align)        (((size) + (align) - 1) & ~((align) - 1))
#define RT_ALIGN_DOWN(size, align)      ((size) & ~((align) - 1))

RT_ALIGN_DOWN(size, align),向下对齐,通过按位与操作&和掩码~(((align) - 1))来将结果向下对齐到最近的align的倍数

怎么实现的呢:

首先,这里align 应该是一个2的幂,比如1(表示按字节对齐)、2(按字对齐,假设字是16位)、4(按双字对齐,假设双字是32位)、8(按四字对齐,假设四字是64位)等。

然后,我们来看掩码 ~(((align) - 1)) 的生成过程:

(align) - 1:如果 align 是2的幂,那么它在二进制表示中只有一个位是1(例如,align 为4时,二进制是 0100),减1后,这个1会变成0,它后面的所有0都会变成1(例如,0100 - 1 = 0011)。

~:按位取反操作会将所有1变为0,所有0变为1。因此,如果 (align) - 1 的结果是 0011,那么取反后就得到 1100

现在,我们有了掩码 1100...(实际上前面还有很多个1,直到达到与 size 相同的位数)。这个掩码的特点是其低位的 log2(align) 个位都是0,其余位都是1。

接下来,我们将这个掩码与 size 进行按位与操作 &

由于掩码的低 log2(align) 位是0,所以 size 的这些低位将被清零。

size 的其余高位则保持不变,因为这些位与掩码的对应位都是1,按位与操作不会改变这些位的值。

这个按位与操作的效果是将 size 向下调整到最近的 align 的倍数。这是因为任何大于或等于 align 的数,在二进制表示中,其低 log2(align) 位至少有一个是1。将这些位清零后,我们就得到了不大于 size 的最大的 align 的倍数。

举个例子,假设 size13(二进制 1101),align4(二进制 0100)。那么掩码就是 1100~((4 - 1)) 的结果)。执行按位与操作 13 & 1100 得到 12(二进制 1100),这正是小于或等于13的最大的4的倍数。

JX_ALIGN(size, align)是向上对齐,就是把size向上对齐到最近的align的倍数,这里就是把block_size对齐到4的倍数,实现的方法是,先size加(align-1),保证超过size所在的当前align的倍数,从而进入下一个align的倍数区间。然后再通过按位与操作&和掩码~(((align) - 1))来将结果向下对齐到最近的align的倍数.

拓展

另外发现一个有意思的事情,单个内存块是向上对齐的,整个内存池是向下对齐的

ini 复制代码
/* initialize memory pool */
    mp->start_address = start;
    mp->size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE);

    /* align the block size */
    block_size = RT_ALIGN(block_size, RT_ALIGN_SIZE);
    mp->block_size = block_size;

仔细读了一遍源码之后想明白了

这个操作是在rt_mp_init()函数里的

他是对于已经申请到了的内存对象进行初始化,就是说这里的size就是实际的这个内存池的大小,假如是向4对齐,这个size是63,我要用的时候只能对齐为60,因为实际就是63kb大小,只能向下对齐。

之后内存块向上对齐,保证够用。

具体能分成多少内存块,是align完的size/block_size

所以主要原因就是,这个操作不是在内存池create的时候,是在init的时候

相关推荐
kyle~3 小时前
ROS2---话题重映射
机器人·嵌入式·ros·控制·电控
切糕师学AI10 天前
半导体行业中的专用标准产品ASSP是什么?
arm开发·嵌入式硬件·嵌入式·计算机体系结构
飞凌嵌入式10 天前
基于飞凌RK3576核心板的国产智能割草机器人设计方案
人工智能·机器人·嵌入式
凉、介12 天前
CPU Cache 的映射与寻址
linux·arm开发·数据库·redis·缓存·嵌入式
华清远见成都中心12 天前
Linux嵌入式和单片机嵌入式的区别?
linux·运维·单片机·嵌入式
Jason_zhao_MR12 天前
多协议物联网关的方案测试-基于米尔全志T536开发板
arm开发·嵌入式硬件·mcu·物联网·嵌入式
小狗祈祷诗13 天前
day43-硬件学习之ARM基础知识
arm开发·学习·嵌入式
Jay_51513 天前
C语言 select、poll、epoll 详解:高性能I/O多路复用技术
select·嵌入式·epoll·poll·多路 i/o
才鲸嵌入式13 天前
C++相比于C语言增加了哪些概念?
c语言·c++·单片机·嵌入式·arm·面向对象·软件
听风lighting13 天前
1. C++ WebServer项目分享
linux·c语言·c++·设计模式·嵌入式·webserver