用 Python + LLM 实现一个智能对话

大型语言模型LLM最近比较火,所以我也来用LLM写个智能对话玩玩。

简介

大语言模型LLM全称是Large Language Models。LLM是指具有巨大参数量和极高语言理解能力的神经网络模型。这些模型被训练来理解和生成自然语言文本,能够执行多种自然语言处理(NLP)任务,如文本生成、翻译、摘要、问答等。 所以LLM可以做以下事情:

  • 文本生成:LLM可以生成各种类型的文本,如新闻、文章、小说等。
  • 智能对话系统:LLM可以用于构建智能对话系统,能够理解用户输入并生成合理的回复。
  • 信息检索和摘要:LLM可以帮助搜索引擎生成更准确的搜索结果摘要。
  • 语言翻译:LLM可以将一种语言翻译成另一种语言。
  • 语言理解和分析:LLM可以用于解析和理解自然语言文本,提取其中的信息和意义。

安装依赖

主要是安装transformers和torch

bash 复制代码
pip install transformers
bash 复制代码
pip install torch

加载模型和分词器

python 复制代码
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

实现对话逻辑

python 复制代码
def chat(prompt, max_length=200):
    # 将输入文本编码成模型可识别的tokens
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    # 生成对话
    response_ids = model.generate(input_ids, max_length=max_length, num_return_sequences=1, temperature=0.9)
    # 解码tokens成文本字符串
    response_text = tokenizer.decode(response_ids[0], skip_special_tokens=True)
    return response_text

调用聊天函数

这里是循环聊天

python 复制代码
while True:
    user_input = input("You:")
    if user_input.lower() == "exit":
        print("Goodbye!")
        break
    response = chat(user_input)
    print("Bot:", response)

完整代码

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

# 加载预训练的GPT-2模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

def chat(prompt, max_length=200):
    # 将输入文本编码成模型可识别的tokens
    input_ids = tokenizer.encode(prompt, return_tensors="pt")

    # 生成对话response
    response_ids = model.generate(input_ids, max_length=max_length, num_return_sequences=1, temperature=0.9)

    # 解码response tokens成文本
    response_text = tokenizer.decode(response_ids[0], skip_special_tokens=True)
    return response_text

# 进入对话循环
while True:
    user_input = input("You:")
    if user_input.lower() == "exit":
        print("Goodbye!")
        break
    response = chat(user_input)
    print("Bot:", response)

目前模型训练还不够智能,所以对话稍显逊色。

之后实现有前端界面的,之后再更新文章。

未完待续。。。

相关推荐
老友@3 分钟前
深入 Spring AI:架构与应用
人工智能·spring·ai·架构
caiyueloveclamp25 分钟前
ChatPPT:AI PPT生成领域的“六边形战士“
人工智能·powerpoint·ai生成ppt·aippt·免费aippt
paperxie_xiexuo31 分钟前
学术与职场演示文稿的结构化生成机制探析:基于 PaperXie AI PPT 功能的流程解构与适用性研究
大数据·数据库·人工智能·powerpoint
算家计算32 分钟前
Meta第三代“分割一切”模型——SAM 3本地部署教程:首支持文本提示分割,400万概念、30毫秒响应,检测分割追踪一网打尽
人工智能·meta
CNRio36 分钟前
生成式AI技术栈全解析:从模型架构到落地工程化
人工智能·架构
算家计算38 分钟前
编程AI新王Claude Opus 4.5正式发布!编程基准突破80.9%,成本降三分之二
人工智能·ai编程·claude
青瓷程序设计1 小时前
鱼类识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
央链知播1 小时前
第二届中国数据产业发展大会暨2025元宇宙AI数据要素“金杏奖”颁奖盛典在广州隆重举行
人工智能·业界资讯·数据产业
GEO_NEWS1 小时前
解析华为Flex:ai的开源棋局
人工智能·华为·开源
扑棱蛾子1 小时前
手摸手教你两分钟搞定Antigravity
人工智能