用 Python + LLM 实现一个智能对话

大型语言模型LLM最近比较火,所以我也来用LLM写个智能对话玩玩。

简介

大语言模型LLM全称是Large Language Models。LLM是指具有巨大参数量和极高语言理解能力的神经网络模型。这些模型被训练来理解和生成自然语言文本,能够执行多种自然语言处理(NLP)任务,如文本生成、翻译、摘要、问答等。 所以LLM可以做以下事情:

  • 文本生成:LLM可以生成各种类型的文本,如新闻、文章、小说等。
  • 智能对话系统:LLM可以用于构建智能对话系统,能够理解用户输入并生成合理的回复。
  • 信息检索和摘要:LLM可以帮助搜索引擎生成更准确的搜索结果摘要。
  • 语言翻译:LLM可以将一种语言翻译成另一种语言。
  • 语言理解和分析:LLM可以用于解析和理解自然语言文本,提取其中的信息和意义。

安装依赖

主要是安装transformers和torch

bash 复制代码
pip install transformers
bash 复制代码
pip install torch

加载模型和分词器

python 复制代码
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

实现对话逻辑

python 复制代码
def chat(prompt, max_length=200):
    # 将输入文本编码成模型可识别的tokens
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    # 生成对话
    response_ids = model.generate(input_ids, max_length=max_length, num_return_sequences=1, temperature=0.9)
    # 解码tokens成文本字符串
    response_text = tokenizer.decode(response_ids[0], skip_special_tokens=True)
    return response_text

调用聊天函数

这里是循环聊天

python 复制代码
while True:
    user_input = input("You:")
    if user_input.lower() == "exit":
        print("Goodbye!")
        break
    response = chat(user_input)
    print("Bot:", response)

完整代码

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

# 加载预训练的GPT-2模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

def chat(prompt, max_length=200):
    # 将输入文本编码成模型可识别的tokens
    input_ids = tokenizer.encode(prompt, return_tensors="pt")

    # 生成对话response
    response_ids = model.generate(input_ids, max_length=max_length, num_return_sequences=1, temperature=0.9)

    # 解码response tokens成文本
    response_text = tokenizer.decode(response_ids[0], skip_special_tokens=True)
    return response_text

# 进入对话循环
while True:
    user_input = input("You:")
    if user_input.lower() == "exit":
        print("Goodbye!")
        break
    response = chat(user_input)
    print("Bot:", response)

目前模型训练还不够智能,所以对话稍显逊色。

之后实现有前端界面的,之后再更新文章。

未完待续。。。

相关推荐
机器之心8 分钟前
登顶SuperCLUE DeepSearch,openPangu-R-72B深度搜索能力跃升
人工智能·openai
DMD1689 分钟前
AI赋能旅游与酒店业:技术逻辑与开发实践解析
大数据·人工智能·信息可视化·重构·旅游·产业升级
TG:@yunlaoda360 云老大31 分钟前
谷歌云AI 时代的算力革命:CPU、GPU 到 TPU 的架构与定位解析
人工智能·架构·googlecloud
AKAMAI32 分钟前
加速采用安全的企业级 Kubernetes 环境
人工智能·云计算
Aspect of twilight44 分钟前
深度学习各种优化器详解
人工智能·深度学习
徽4401 小时前
农田植被目标检测数据标注与模型训练总结2
人工智能·目标检测·目标跟踪
Elastic 中国社区官方博客1 小时前
Elasticsearch 中使用 NVIDIA cuVS 实现最高快 12 倍的向量索引速度:GPU 加速第 2 章
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·数据库架构
jkyy20141 小时前
线上线下融合、跨场景协同—社区健康医疗小屋的智能升级
大数据·人工智能·物联网·健康医疗
苏州知芯传感2 小时前
当AI遇见MEMS:机器学习如何优化微振镜的控制与可靠性预测
人工智能·机器学习·3d·mems·微振镜
星域智链2 小时前
AI加持日常小节日:让每一份心意都精准升温✨
人工智能·科技·学习·生活·节日