用 Python + LLM 实现一个智能对话

大型语言模型LLM最近比较火,所以我也来用LLM写个智能对话玩玩。

简介

大语言模型LLM全称是Large Language Models。LLM是指具有巨大参数量和极高语言理解能力的神经网络模型。这些模型被训练来理解和生成自然语言文本,能够执行多种自然语言处理(NLP)任务,如文本生成、翻译、摘要、问答等。 所以LLM可以做以下事情:

  • 文本生成:LLM可以生成各种类型的文本,如新闻、文章、小说等。
  • 智能对话系统:LLM可以用于构建智能对话系统,能够理解用户输入并生成合理的回复。
  • 信息检索和摘要:LLM可以帮助搜索引擎生成更准确的搜索结果摘要。
  • 语言翻译:LLM可以将一种语言翻译成另一种语言。
  • 语言理解和分析:LLM可以用于解析和理解自然语言文本,提取其中的信息和意义。

安装依赖

主要是安装transformers和torch

bash 复制代码
pip install transformers
bash 复制代码
pip install torch

加载模型和分词器

python 复制代码
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

实现对话逻辑

python 复制代码
def chat(prompt, max_length=200):
    # 将输入文本编码成模型可识别的tokens
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    # 生成对话
    response_ids = model.generate(input_ids, max_length=max_length, num_return_sequences=1, temperature=0.9)
    # 解码tokens成文本字符串
    response_text = tokenizer.decode(response_ids[0], skip_special_tokens=True)
    return response_text

调用聊天函数

这里是循环聊天

python 复制代码
while True:
    user_input = input("You:")
    if user_input.lower() == "exit":
        print("Goodbye!")
        break
    response = chat(user_input)
    print("Bot:", response)

完整代码

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

# 加载预训练的GPT-2模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

def chat(prompt, max_length=200):
    # 将输入文本编码成模型可识别的tokens
    input_ids = tokenizer.encode(prompt, return_tensors="pt")

    # 生成对话response
    response_ids = model.generate(input_ids, max_length=max_length, num_return_sequences=1, temperature=0.9)

    # 解码response tokens成文本
    response_text = tokenizer.decode(response_ids[0], skip_special_tokens=True)
    return response_text

# 进入对话循环
while True:
    user_input = input("You:")
    if user_input.lower() == "exit":
        print("Goodbye!")
        break
    response = chat(user_input)
    print("Bot:", response)

目前模型训练还不够智能,所以对话稍显逊色。

之后实现有前端界面的,之后再更新文章。

未完待续。。。

相关推荐
云知谷27 分钟前
【C++基本功】C++适合做什么,哪些领域适合哪些领域不适合?
c语言·开发语言·c++·人工智能·团队开发
rit84324991 小时前
基于MATLAB实现基于距离的离群点检测算法
人工智能·算法·matlab
初学小刘2 小时前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
递归不收敛2 小时前
大语言模型(LLM)入门笔记:嵌入向量与位置信息
人工智能·笔记·语言模型
之墨_3 小时前
【大语言模型】—— 自注意力机制及其变体(交叉注意力、因果注意力、多头注意力)的代码实现
人工智能·语言模型·自然语言处理
从孑开始4 小时前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine
涛涛讲AI4 小时前
一段音频多段字幕,让音频能够流畅自然对应字幕 AI生成视频,扣子生成剪映视频草稿
人工智能·音视频·语音识别
可触的未来,发芽的智生4 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
WWZZ20255 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam
AKAMAI5 小时前
数据孤岛破局之战 :跨业务分析的难题攻坚
运维·人工智能·云计算