用 Python + LLM 实现一个智能对话

大型语言模型LLM最近比较火,所以我也来用LLM写个智能对话玩玩。

简介

大语言模型LLM全称是Large Language Models。LLM是指具有巨大参数量和极高语言理解能力的神经网络模型。这些模型被训练来理解和生成自然语言文本,能够执行多种自然语言处理(NLP)任务,如文本生成、翻译、摘要、问答等。 所以LLM可以做以下事情:

  • 文本生成:LLM可以生成各种类型的文本,如新闻、文章、小说等。
  • 智能对话系统:LLM可以用于构建智能对话系统,能够理解用户输入并生成合理的回复。
  • 信息检索和摘要:LLM可以帮助搜索引擎生成更准确的搜索结果摘要。
  • 语言翻译:LLM可以将一种语言翻译成另一种语言。
  • 语言理解和分析:LLM可以用于解析和理解自然语言文本,提取其中的信息和意义。

安装依赖

主要是安装transformers和torch

bash 复制代码
pip install transformers
bash 复制代码
pip install torch

加载模型和分词器

python 复制代码
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

实现对话逻辑

python 复制代码
def chat(prompt, max_length=200):
    # 将输入文本编码成模型可识别的tokens
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    # 生成对话
    response_ids = model.generate(input_ids, max_length=max_length, num_return_sequences=1, temperature=0.9)
    # 解码tokens成文本字符串
    response_text = tokenizer.decode(response_ids[0], skip_special_tokens=True)
    return response_text

调用聊天函数

这里是循环聊天

python 复制代码
while True:
    user_input = input("You:")
    if user_input.lower() == "exit":
        print("Goodbye!")
        break
    response = chat(user_input)
    print("Bot:", response)

完整代码

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

# 加载预训练的GPT-2模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

def chat(prompt, max_length=200):
    # 将输入文本编码成模型可识别的tokens
    input_ids = tokenizer.encode(prompt, return_tensors="pt")

    # 生成对话response
    response_ids = model.generate(input_ids, max_length=max_length, num_return_sequences=1, temperature=0.9)

    # 解码response tokens成文本
    response_text = tokenizer.decode(response_ids[0], skip_special_tokens=True)
    return response_text

# 进入对话循环
while True:
    user_input = input("You:")
    if user_input.lower() == "exit":
        print("Goodbye!")
        break
    response = chat(user_input)
    print("Bot:", response)

目前模型训练还不够智能,所以对话稍显逊色。

之后实现有前端界面的,之后再更新文章。

未完待续。。。

相关推荐
麻雀无能为力16 分钟前
现代卷积神经网络
人工智能·神经网络·cnn
FL162386312929 分钟前
医学类数据集目标检测分割分类数据集汇总介绍
人工智能·目标检测·分类
on_pluto_33 分钟前
【推荐系统14】数据分析:以阿里天池新闻推荐为例学习
人工智能·学习·数据挖掘·数据分析·推荐算法
学术小白人37 分钟前
最后一轮征稿!2025年能源互联网与电气工程国际学术会议
人工智能·科技·计算机视觉·能源
非著名架构师42 分钟前
您的能源预算,是否正被“异常气温”悄悄透支?智慧气象助力实现精准能耗管理
人工智能·能源·新能源风光提高精度·疾风气象大模型4.0·新能源风光预测冬季提高精度
流烟默1 小时前
机器学习中交叉验证(CV)、CV fold(交叉验证折) 和 数据泄露
人工智能·深度学习·机器学习·交叉验证
iffy11 小时前
编译立创S3小智语音机器人+修改表情
人工智能
c++服务器开发1 小时前
掌握RAG系统的七个优秀GitHub存储库
人工智能·python·github·rag
AIBox3651 小时前
ChatGPT 2025版:高效AI助手使用指南
人工智能·chatgpt
大千AI助手2 小时前
PPT: Pre-trained Prompt Tuning - 预训练提示调优详解
人工智能·神经网络·llm·prompt·ppt·大千ai助手·预训练提示调优