滑块验证码

网站滑块验证码是一种常见的人机验证方式,通过模拟用户拖动滑块来确认用户的身份。本文将介绍如何逆向工程网站滑块验证码的加密算法和轨迹生成方式,并提供详细的代码实现。

  1. 加密算法解析

首先,我们需要了解滑块验证码生成时所用的加密算法。通过分析网站的前端代码或使用浏览器开发者工具,我们可以定位到滑块验证过程中的加密函数。

// 加密函数示例

function encrypt(data) {

// 加密操作代码

return encrypted_data;

}

在这个加密函数中,我们可以观察到对传入数据的加密操作。通常情况下,会使用一种对称加密算法(如AES)对数据进行加密,并返回加密后的结果。

  1. 轨迹生成方式

除了加密算法,网站滑块验证码还需要模拟用户的滑动轨迹,以通过验证。通过分析滑块验证过程中的网络请求或者前端代码,我们可以了解到滑块轨迹是如何生成的。

// 轨迹生成函数示例

function generateTrajectory(relativeX) {

// 轨迹生成操作代码

return trajectory;

}

在这个生成轨迹的函数中,通常会根据滑块的位置信息,计算出滑块的移动轨迹。这个轨迹信息通常是一个数组,包含了滑块的x、y坐标以及时间信息。

  1. 完整实现代码

现在,让我们将以上分析转化为Python代码,以实现网站滑块验证码的自动化识别和解答。

import requests

from Crypto.Cipher import AES

from Crypto.Util.Padding import pad

from base64 import b64decode, b64encode

import json

加密密钥和初始向量

key = b64decode('your_key')

iv = b64decode('your_iv')

加密函数

def encrypt(data):

cipher = AES.new(key, AES.MODE_CBC, iv)

ciphertext = cipher.encrypt(pad(data.encode(), AES.block_size))

return b64encode(ciphertext).decode()

获取滑块验证码配置信息

def get_slider_captcha():

url = 'https://example.com/slider_captcha/config'

params = {'session': 'your_session'}

response = requests.get(url, params=params)

return response.json()

模拟滑动轨迹

def simulate_trajectory(relativeX):

根据相应的轨迹生成算法生成滑块轨迹

return trajectory

主函数

def main():

获取滑块验证码配置信息

config = get_slider_captcha()

relativeX = config['relativeX']

trajectory = simulate_trajectory(relativeX)

captcha_data = {

'trajectory': trajectory,

'relativeX': config['relativeX'],

'relativeY': config['relativeY'],

其他必要的参数

}

加密滑块验证码数据

encrypted_data = encrypt(json.dumps(captcha_data))

print("Encrypted Data:", encrypted_data)

if name == "main":

main()

如果上述代码遇到问题或已更新无法使用等情况可以联系Q:1436423940或直接访问www.ttocr.com测试对接(免费得哈)

相关推荐
eBest数字化转型方案16 分钟前
2025年快消品行业渠道数字化营销系统全景透视与选型策略
人工智能
kkcodeer31 分钟前
大模型Prompt原理、编写原则与技巧以及衡量方法
人工智能·prompt·ai大模型
DevSecOps选型指南41 分钟前
SBOM风险预警 | NPM前端框架 javaxscript 遭受投毒窃取浏览器cookie
前端·人工智能·前端框架·npm·软件供应链安全厂商·软件供应链安全工具
rocksun44 分钟前
MCP利用流式HTTP实现实时AI工具交互
人工智能·mcp
xiaok1 小时前
docker network create langbot-network这条命令在dify输入还是在langbot中输入
人工智能
It_张1 小时前
LLM(大语言模型)的工作原理 图文讲解
人工智能·语言模型·自然语言处理
Darach1 小时前
坐姿检测Python实现
人工智能·python
xiaok1 小时前
LangBot 和消息平台均运行在 Docker 容器中
人工智能
queeny1 小时前
Datawhale AI夏令营 科大讯飞AI大赛(大模型技术) Task3 心得
人工智能