滑块验证码

网站滑块验证码是一种常见的人机验证方式,通过模拟用户拖动滑块来确认用户的身份。本文将介绍如何逆向工程网站滑块验证码的加密算法和轨迹生成方式,并提供详细的代码实现。

  1. 加密算法解析

首先,我们需要了解滑块验证码生成时所用的加密算法。通过分析网站的前端代码或使用浏览器开发者工具,我们可以定位到滑块验证过程中的加密函数。

// 加密函数示例

function encrypt(data) {

// 加密操作代码

return encrypted_data;

}

在这个加密函数中,我们可以观察到对传入数据的加密操作。通常情况下,会使用一种对称加密算法(如AES)对数据进行加密,并返回加密后的结果。

  1. 轨迹生成方式

除了加密算法,网站滑块验证码还需要模拟用户的滑动轨迹,以通过验证。通过分析滑块验证过程中的网络请求或者前端代码,我们可以了解到滑块轨迹是如何生成的。

// 轨迹生成函数示例

function generateTrajectory(relativeX) {

// 轨迹生成操作代码

return trajectory;

}

在这个生成轨迹的函数中,通常会根据滑块的位置信息,计算出滑块的移动轨迹。这个轨迹信息通常是一个数组,包含了滑块的x、y坐标以及时间信息。

  1. 完整实现代码

现在,让我们将以上分析转化为Python代码,以实现网站滑块验证码的自动化识别和解答。

import requests

from Crypto.Cipher import AES

from Crypto.Util.Padding import pad

from base64 import b64decode, b64encode

import json

加密密钥和初始向量

key = b64decode('your_key')

iv = b64decode('your_iv')

加密函数

def encrypt(data):

cipher = AES.new(key, AES.MODE_CBC, iv)

ciphertext = cipher.encrypt(pad(data.encode(), AES.block_size))

return b64encode(ciphertext).decode()

获取滑块验证码配置信息

def get_slider_captcha():

url = 'https://example.com/slider_captcha/config'

params = {'session': 'your_session'}

response = requests.get(url, params=params)

return response.json()

模拟滑动轨迹

def simulate_trajectory(relativeX):

根据相应的轨迹生成算法生成滑块轨迹

return trajectory

主函数

def main():

获取滑块验证码配置信息

config = get_slider_captcha()

relativeX = config['relativeX']

trajectory = simulate_trajectory(relativeX)

captcha_data = {

'trajectory': trajectory,

'relativeX': config['relativeX'],

'relativeY': config['relativeY'],

其他必要的参数

}

加密滑块验证码数据

encrypted_data = encrypt(json.dumps(captcha_data))

print("Encrypted Data:", encrypted_data)

if name == "main":

main()

如果上述代码遇到问题或已更新无法使用等情况可以联系Q:1436423940或直接访问www.ttocr.com测试对接(免费得哈)

相关推荐
CareyWYR8 分钟前
每周AI论文速递(251006-251010)
人工智能
QYR_1111 分钟前
全球 VR 模拟器市场竞争格局报告:头部企业战略布局、市场份额
人工智能·市场研究
远上寒山25 分钟前
YOLO26 详解:面向边缘与低功耗的端到端(NMS‑free)目标检测新范式
人工智能·目标检测·计算机视觉
视觉语言导航27 分钟前
具身导航分层思考、动态行动!MFRA:面向视觉语言导航的层次化多模态融合与推理
人工智能·具身智能
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2025-10-11
人工智能·经验分享·搜索引擎·产品运营
极度畅想2 小时前
脑电模型实战系列(二):PyTorch实现简单DNN模型
深度学习·脑机接口·bci·情感计算·eeg情绪识别·跨被试泛化·dnn cnn rnn
视觉语言导航2 小时前
CoRL-2025 | 物体相对控制赋能具身导航!ObjectReact:学习用于视觉导航的物体相对控制
人工智能·具身智能
Chat_zhanggong3453 小时前
HI3516CV610-20S开发板
人工智能·嵌入式硬件·编辑器
莫***先3 小时前
鼎锋优配股票杠杆AI应用软件股走强,Figma涨幅超14%,Confluent涨超10%
人工智能·figma
数在表哥3 小时前
从数据沼泽到智能决策:数据驱动与AI融合的中台建设方法论与技术实践指南(四)
大数据·人工智能