LangChain:大型语言模型(LLMs)-- 基础知识

1、LangChain的调用大型语言模型模块的介绍

LangChain是一个强大的框架,旨在通过调用大型语言模型(LLM)来开发各种语言驱动的应用程序。在LangChain中,LLM不仅仅是一个简单的模型调用,而是一个复杂链条中的关键部分。这个链条可能包括数据检索、模型推理、上下文感知等多个环节,共同构成了LangChain的强大功能。

LangChain对LLM的调用进行了高度抽象和优化,使得开发者可以轻松地将不同的LLM集成到自己的应用程序中。无论是OpenAI的GPT系列,还是其他提供商的模型,LangChain都提供了一个统一、标准的接口,极大地简化了开发过程。

2、LangChain的调用大型语言模型模块的使用

使用LangChain调用LLM非常简单。首先,开发者需要选择一个合适的LLM提供商,并获取相应的API密钥。然后,他们可以通过LangChain提供的标准接口,轻松地调用LLM进行各种任务,如文本生成、问答、摘要等。

LangChain还提供了丰富的上下文感知能力,使得LLM可以更好地理解用户的输入和意图。通过将LLM连接到各种上下文来源,如提示指令、历史对话等,LangChain可以帮助开发者构建出更加智能、自然的应用程序。

此外,LangChain还支持链式调用,即在一个链条中依次调用多个LLM或实用工具。这种灵活性使得开发者可以根据需要自由组合不同的模型和工具,实现更加复杂的功能。

3、LangChain的调用大型语言模型模块的代码范例

下面是一个使用LangChain调用LLM的简单代码范例:

python 复制代码
import os
os.environ["OPENAI_API_KEY"] = 'sk-xxx'
os.environ["OPENAI_BASE_URL"] = 'https://api.openai.com/v1'

from langchain_openai import ChatOpenAI


llm = ChatOpenAI();
llm2 = OpenAI()
respond = llm.invoke("你是谁?")
print(respond.content)

在这个例子中,我们首先导入了ChatOpenAI类,然后创建了一个实例,使用invoke提问。当然如果使用上下文,也可以创建prompt类,同样使用invoke提问:

python 复制代码
import os
os.environ["OPENAI_API_KEY"] = 'sk-xxx'
os.environ["OPENAI_BASE_URL"] = 'https://api.openai.com/v1'

from langchain_openai import ChatOpenAI
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate

template = ChatPromptTemplate.from_messages([
    SystemMessagePromptTemplate.from_template("你是{product}专家助手,你的名字叫{name}"),
    HumanMessagePromptTemplate.from_template("{query}")

])

llm = ChatOpenAI();
prompt = template.format_messages(name="小猫", product="langchain", query="你好,你是谁?")
# llm(prompt)
respond = llm.invoke(prompt)
print(respond.content)
相关推荐
深科文库7 小时前
构建 MCP 服务器:第 3 部分 — 添加提示
服务器·python·chatgpt·langchain·prompt·aigc·agi
威化饼的一隅10 小时前
【大模型LLM学习】function call/agent学习记录
langchain·agent·function call·工具调用·意图识别
千|寻10 小时前
【画江湖】langchain4j - Java1.8下spring boot集成ollama调用本地大模型之问道系列(第一问)
java·spring boot·后端·langchain
深科文库12 小时前
构建 MCP 服务器:第 4 部分 — 创建工具
python·chatgpt·prompt·aigc·agi·ai-native
幼稚园的山代王13 小时前
Prompt Enginering(提示工程)先进技术
java·人工智能·ai·chatgpt·langchain·prompt
ai大师1 天前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
爱喝喜茶爱吃烤冷面的小黑黑1 天前
小黑一层层削苹果皮式大模型应用探索:langchain中智能体思考和执行工具的demo
python·langchain·代理模式
大千AI1 天前
LangChain Core架构解析:模块化设计与LCEL原语实现原理
langchain
Chatopera 研发团队1 天前
智能体开发,实现自定义知识库,基于 LangChain,qwen 7b, ollama, chatopera | LLMs
langchain
硅谷神农2 天前
第一章:AI与LangChain初探 —— 你的第一个“智能”程序
langchain