LangChain:大型语言模型(LLMs)-- 基础知识

1、LangChain的调用大型语言模型模块的介绍

LangChain是一个强大的框架,旨在通过调用大型语言模型(LLM)来开发各种语言驱动的应用程序。在LangChain中,LLM不仅仅是一个简单的模型调用,而是一个复杂链条中的关键部分。这个链条可能包括数据检索、模型推理、上下文感知等多个环节,共同构成了LangChain的强大功能。

LangChain对LLM的调用进行了高度抽象和优化,使得开发者可以轻松地将不同的LLM集成到自己的应用程序中。无论是OpenAI的GPT系列,还是其他提供商的模型,LangChain都提供了一个统一、标准的接口,极大地简化了开发过程。

2、LangChain的调用大型语言模型模块的使用

使用LangChain调用LLM非常简单。首先,开发者需要选择一个合适的LLM提供商,并获取相应的API密钥。然后,他们可以通过LangChain提供的标准接口,轻松地调用LLM进行各种任务,如文本生成、问答、摘要等。

LangChain还提供了丰富的上下文感知能力,使得LLM可以更好地理解用户的输入和意图。通过将LLM连接到各种上下文来源,如提示指令、历史对话等,LangChain可以帮助开发者构建出更加智能、自然的应用程序。

此外,LangChain还支持链式调用,即在一个链条中依次调用多个LLM或实用工具。这种灵活性使得开发者可以根据需要自由组合不同的模型和工具,实现更加复杂的功能。

3、LangChain的调用大型语言模型模块的代码范例

下面是一个使用LangChain调用LLM的简单代码范例:

python 复制代码
import os
os.environ["OPENAI_API_KEY"] = 'sk-xxx'
os.environ["OPENAI_BASE_URL"] = 'https://api.openai.com/v1'

from langchain_openai import ChatOpenAI


llm = ChatOpenAI();
llm2 = OpenAI()
respond = llm.invoke("你是谁?")
print(respond.content)

在这个例子中,我们首先导入了ChatOpenAI类,然后创建了一个实例,使用invoke提问。当然如果使用上下文,也可以创建prompt类,同样使用invoke提问:

python 复制代码
import os
os.environ["OPENAI_API_KEY"] = 'sk-xxx'
os.environ["OPENAI_BASE_URL"] = 'https://api.openai.com/v1'

from langchain_openai import ChatOpenAI
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate

template = ChatPromptTemplate.from_messages([
    SystemMessagePromptTemplate.from_template("你是{product}专家助手,你的名字叫{name}"),
    HumanMessagePromptTemplate.from_template("{query}")

])

llm = ChatOpenAI();
prompt = template.format_messages(name="小猫", product="langchain", query="你好,你是谁?")
# llm(prompt)
respond = llm.invoke(prompt)
print(respond.content)
相关推荐
陈敬雷-充电了么-CEO兼CTO1 小时前
DeepSeek vs ChatGPT 技术架构、成本与场景全解析
人工智能·chatgpt·架构
行者阿毅3 小时前
langchain4j+SpringBoot+DashScope(灵积)整合
spring boot·langchain·ai编程
深度学习机器6 小时前
AI Agent上下文工程设计指南|附实用工具推荐
langchain·llm·agent
siliconstorm.ai8 小时前
阿里下场造“机器人”:从通义千问到具身智能,中国AI正走向“实体化”阶段
人工智能·自然语言处理·chatgpt·机器人·云计算
聚客AI10 小时前
系统提示的“消亡”?上下文工程正在重新定义人机交互规则
图像处理·人工智能·pytorch·语言模型·自然语言处理·chatgpt·gpt-3
冰糖猕猴桃12 小时前
【AI】深入 LangChain 生态:核心包架构解析
人工智能·ai·架构·langchain
Brianna Home13 小时前
从“码农”到“导演”:AI结对编程如何重塑软件工程范式
大数据·人工智能·深度学习·自然语言处理·chatgpt
三天哥1 天前
演示和解读ChatGPT App SDK,以后Android/iOS App不用开发了?
人工智能·ai·chatgpt·aigc·openai·智能体·appsdk
美人鱼战士爱学习1 天前
2025 AAAI HLMEA: Unsupervised Entity Alignment Based on Hybrid Language Models
chatgpt·知识图谱
工藤学编程2 天前
零基础学AI大模型之LangChain链
人工智能·langchain