LangChain:大型语言模型(LLMs)-- 基础知识

1、LangChain的调用大型语言模型模块的介绍

LangChain是一个强大的框架,旨在通过调用大型语言模型(LLM)来开发各种语言驱动的应用程序。在LangChain中,LLM不仅仅是一个简单的模型调用,而是一个复杂链条中的关键部分。这个链条可能包括数据检索、模型推理、上下文感知等多个环节,共同构成了LangChain的强大功能。

LangChain对LLM的调用进行了高度抽象和优化,使得开发者可以轻松地将不同的LLM集成到自己的应用程序中。无论是OpenAI的GPT系列,还是其他提供商的模型,LangChain都提供了一个统一、标准的接口,极大地简化了开发过程。

2、LangChain的调用大型语言模型模块的使用

使用LangChain调用LLM非常简单。首先,开发者需要选择一个合适的LLM提供商,并获取相应的API密钥。然后,他们可以通过LangChain提供的标准接口,轻松地调用LLM进行各种任务,如文本生成、问答、摘要等。

LangChain还提供了丰富的上下文感知能力,使得LLM可以更好地理解用户的输入和意图。通过将LLM连接到各种上下文来源,如提示指令、历史对话等,LangChain可以帮助开发者构建出更加智能、自然的应用程序。

此外,LangChain还支持链式调用,即在一个链条中依次调用多个LLM或实用工具。这种灵活性使得开发者可以根据需要自由组合不同的模型和工具,实现更加复杂的功能。

3、LangChain的调用大型语言模型模块的代码范例

下面是一个使用LangChain调用LLM的简单代码范例:

python 复制代码
import os
os.environ["OPENAI_API_KEY"] = 'sk-xxx'
os.environ["OPENAI_BASE_URL"] = 'https://api.openai.com/v1'

from langchain_openai import ChatOpenAI


llm = ChatOpenAI();
llm2 = OpenAI()
respond = llm.invoke("你是谁?")
print(respond.content)

在这个例子中,我们首先导入了ChatOpenAI类,然后创建了一个实例,使用invoke提问。当然如果使用上下文,也可以创建prompt类,同样使用invoke提问:

python 复制代码
import os
os.environ["OPENAI_API_KEY"] = 'sk-xxx'
os.environ["OPENAI_BASE_URL"] = 'https://api.openai.com/v1'

from langchain_openai import ChatOpenAI
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate

template = ChatPromptTemplate.from_messages([
    SystemMessagePromptTemplate.from_template("你是{product}专家助手,你的名字叫{name}"),
    HumanMessagePromptTemplate.from_template("{query}")

])

llm = ChatOpenAI();
prompt = template.format_messages(name="小猫", product="langchain", query="你好,你是谁?")
# llm(prompt)
respond = llm.invoke(prompt)
print(respond.content)
相关推荐
有点笨的蛋40 分钟前
LangChain 入门与实践:从 LLM 调用到 AI 工作流的工程化思维
前端·langchain
工藤学编程42 分钟前
AI Ping 赋能:基于 GLM-4.7(免费!)+ LangChain + Redis 打造智能AI聊天助手
人工智能·redis·langchain
啊吧怪不啊吧1 小时前
新品限免|国产大模型工程化实战:GLM-4.7与MiniMax M2.1 免费选型对比
人工智能·机器学习·langchain
模型启动机2 小时前
对话奥特曼:OpenAI的真实未来蓝图
人工智能·ai·chatgpt·大模型
闻道且行之2 小时前
NLP 部署实操:Langchain-Chatchat 完整部署教程与踩坑记录
人工智能·自然语言处理·langchain
xhxxx14 小时前
别再让 AI 自由发挥了!用 LangChain + Zod 强制它输出合法 JSON
前端·langchain·llm
San30.17 小时前
从零到一:开启 LangChain 的 AI 工程化之旅
人工智能·langchain·node.js
kimi-22219 小时前
create_tool_calling_agent、create_react_agent区别
langchain
大模型教程21 小时前
大模型LLM入门篇:小白入门一文快速了解大模型(附教程)
langchain·llm·agent
Robot侠21 小时前
给自己做一个 ChatGPT:基于 Gradio 的本地 LLM 网页对话界面
人工智能·chatgpt·llm·llama·qwen·gradio