Bert 将长段分成句子放在一个batch输入

bash 复制代码
from nltk.tokenize import RegexpTokenizer

sentence = """Thomas Jefferson began building Monticello at the age of 26."""
# 按照自己的规则进行分词,使用正则分词器
# \w 匹配字母、数字、下划线
# 匹配任何非空白字符
tokenizer = RegexpTokenizer(r'\w+|$[0-9.]+|\S+')
print(tokenizer.tokenize(sentence))

bert的任务 上下句和mask,mask掩码就是需要预测的部分,上下句预测现在基本不用了 mask基本都会加上,mask 可以控制掩住哪里

使用预训练模型时候要注意预训练的权重是在什么类型的数据集上训练的,方面情感分析 可以分为多少个方面类也比较重要

相关推荐
一个无名的炼丹师3 分钟前
GraphRAG深度解析:从原理到实战,重塑RAG检索增强生成的未来
人工智能·python·rag
Yan-英杰26 分钟前
BoostKit OmniAdaptor 源码深度解析
网络·人工智能·网络协议·tcp/ip·http
用泥种荷花39 分钟前
【LangChain学习笔记】Message
人工智能
阿里云大数据AI技术43 分钟前
一套底座支撑多场景:高德地图基于 Paimon + StarRocks 轨迹服务实践
人工智能
云擎算力平台omniyq.com44 分钟前
CES 2026观察:从“物理AI”愿景看行业算力基础设施演进
人工智能
想用offer打牌1 小时前
一站式了解Spring AI Alibaba的流式输出
java·人工智能·后端
黑符石1 小时前
【论文研读】Madgwick 姿态滤波算法报告总结
人工智能·算法·机器学习·imu·惯性动捕·madgwick·姿态滤波
JQLvopkk1 小时前
智能AI“学习功能”在程序开发部分的逻辑
人工智能·机器学习·计算机视觉
我的offer在哪里1 小时前
Hugging Face:让大模型触手可及的魔法工厂
人工智能·python·语言模型·开源·ai编程