Bert 将长段分成句子放在一个batch输入

bash 复制代码
from nltk.tokenize import RegexpTokenizer

sentence = """Thomas Jefferson began building Monticello at the age of 26."""
# 按照自己的规则进行分词,使用正则分词器
# \w 匹配字母、数字、下划线
# 匹配任何非空白字符
tokenizer = RegexpTokenizer(r'\w+|$[0-9.]+|\S+')
print(tokenizer.tokenize(sentence))

bert的任务 上下句和mask,mask掩码就是需要预测的部分,上下句预测现在基本不用了 mask基本都会加上,mask 可以控制掩住哪里

使用预训练模型时候要注意预训练的权重是在什么类型的数据集上训练的,方面情感分析 可以分为多少个方面类也比较重要

相关推荐
白日做梦Q27 分钟前
数据增强策略:不仅仅是旋转和翻转
人工智能·深度学习
reddingtons32 分钟前
【品牌包装】告别“贴图怪”!Firefly + Illustrator Mockup,0 建模一键“真”样机
人工智能·aigc·illustrator·传媒·设计师·贴图·样机
大模型任我行36 分钟前
Meta:LLM无监督提升科研能力
人工智能·语言模型·自然语言处理·论文笔记
重生之我要成为代码大佬1 小时前
深度学习1-安装pytorch(无独立显卡版本)
人工智能·pytorch·深度学习·机器学习
seasonsyy1 小时前
密码学领域的“三大顶会” & IACR网站简介
人工智能·密码学
Lian_Ge_Blog1 小时前
微调方法学习总结(万字长文!)
人工智能·深度学习
水月wwww1 小时前
【深度学习】循环神经网络实现文本预测生成
人工智能·rnn·深度学习·gru·lstm·循环神经网络·文本续写
ASD123asfadxv1 小时前
齿轮端面缺陷检测与分类_DINO-4Scale实现与训练_1
人工智能·分类·数据挖掘
汗流浃背了吧,老弟!2 小时前
SFT(监督式微调)
人工智能