DeiT:量化 Vision Transformers 以实现高效部署

随着各行业对先进计算机视觉系统的需求持续激增,视觉变压器的部署已成为研究人员和从业者的焦点。然而,要充分发挥这些模型的潜力,需要对其架构有深入的了解。此外,制定有效部署这些模型的优化策略也同样重要。

使用平台:

OpenBayes贝式计算:点击注册可 get 4 小时 4090

登陆后,点击「公共教程」,找到「DeiT:量化 Vision Transformers 以实现高效部署」,该教程已经搭建好了环境。

点击「克隆」,将教程克隆至自己的容器。

分配资源完成后,当状态显示为「运行中」后,点击打开工作空间。

打开左侧 ViT.ipynb 文件

先运行 !pip install --user transformers==4.38.2 timm==0.9.16 这个代码,等待它安装依赖,安装好依赖后需要重启内核否则会显示缺失。

可以使用一张足球的图片来做检测,可以得到检测结果为足球。

ini 复制代码
#预测图片的地址
    image_path = "./pic/football.jpg"
    image_array = img.open(image_path)
    #Vit模型地址
    vision_encoder_decoder_model_name_or_path = "./my_model/"
    #加载ViT特征转化and预训练模型
    #feature_extractor = ViTFeatureExtractor.from_pretrained(vision_encoder_decoder_model_name_or_path)
    #model = ViTForImageClassification.from_pretrained(vision_encoder_decoder_model_name_or_path)
    feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
    model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
    #使用Vit特征提取器处理输入图像,专为ViT模型的格式
    inputs = feature_extractor(images = image_array, 
                               return_tensors="pt")
    #预训练模型处理输入并生成输出 logits,代表模型对不同类别的预测。
    outputs = model(**inputs)
    #创建一个变量来存储预测类的索引。
    logits = outputs.logits
    # 查找具有最高 Logit 分数的类的索引
    predicted_class_idx = logits.argmax(-1).item()
    print(predicted_class_idx)
    #805
    print("Predicted class:", model.config.id2label[predicted_class_idx])
    #预测种类:足球

然后我们将一些所需要的模型转移到指定文件夹内。

然后再使用这个 DeiT 模型对图片进行分类。

这里会打印一个它的类别索引,是 978。

下面是一些代码的分解。

这是对模型的一些量化。

量化完成后会保存到左侧文件夹内。

模型优化完成后也会保存到左侧文件夹内。

可以对这个模型进行精简,部署在移动或者边缘设备上。

然后我们再对一些模型的变形体进行推理速度的的检测。

在完成后,就会对每个模型的推理事件进行一个检测。

如果觉得文字教程不好理解,可以在 B 站搜索视频 DeiT:量化 Vision Transformers 以实现高效部署,根据学习操作~

相关推荐
RPA机器人就选八爪鱼15 小时前
银行业流程自动化升级:RPA 机器人赋能金融数智转型
大数据·人工智能·机器人·自动化·rpa
创客匠人老蒋15 小时前
创客匠人:知识IP进阶之路,从“想做很多”到“只做一个爆品”
人工智能·创客匠人全球ip+ai高峰论坛·全球创始人ip+ai万人峰会
AI大模型15 小时前
大模型AI Agent 小白科研路线规划:从入门到精通!(含Agent学习资源)
程序员·llm·agent
Winwoo15 小时前
AI Commit:拯救词穷,自动生成 Git Message
人工智能·程序员
花花Binki15 小时前
大模型你别再失忆了!你尔多隆吗?
人工智能
沛沛老爹15 小时前
Web开发者快速上手AI Agent:基于提示工程的旅游攻略系统实战
前端·人工智能·ai·agent·react·旅游攻略
小脉传媒GEO15 小时前
GEO优化数据统计系统DeepAnaX系统详细介绍:构建企业级AI数据智能分析平台
人工智能·信息可视化
Coovally AI模型快速验证15 小时前
是什么支撑L3自动驾驶落地?读懂AI驾驶与碰撞预测
人工智能·深度学习·目标检测·机器学习·计算机视觉·自动驾驶
大、男人15 小时前
FastMCP高级特性之Proxy Servers(代理服务)
人工智能·fastmcp
Java后端的Ai之路15 小时前
【分析式AI】-LightGBM算法命名解释
人工智能·算法·机器学习·aigc·分析式ai