大语言模型本地化部署思路

目前国内大语言模型犹如雨后春笋一样在神州大地生长,结合目前的政策形势,人工智能将迎来爆发式增长,目前发展状况通用大语言模型的部署将越来越容易,且能力将越来越强。但通用大模型如何赋能各行各业打造垂直大模型的应用呢?我想谈谈我对大语言模型本地化部署的几个思路:

一、直接部署大语言模型

这种部署比较容易,我们通过Huggface,或者魔搭平台(ModelScope)下载对应的模型,然后通过python的虚拟环境就可以快速的部署大语言模型。相比之下这样的部署没多大意义,因为通用大语言模型目前很多都是免费开放的,可以直接使用,所以建议使用大厂免费的服务直接使用。

二、对大语言模型进行全量调参

这种模式如果做好了,最终效果最好,但是其代价也是最高的,毕竟一般的大模型的参数动辄都是以"十亿"为计量单位,如果需要调参,需要大量的原始数据且要对数据进行标准化,因为数据质量直接影响大模型的最终效果。并且在训练的时候需要的硬件成本也是非常的高。所以该方法不是大厂基本不建议使用

三、结合本地知识库部署大语言模型

这种模式是使用的大语言模型对本地知识库内容的总结归纳能力,比如,我们本地文档特别多,但是我们的问题来自多个文档,获得数据比较零散,我们需要通过大语言模型对零散的知识进行归类总结。常用的方法 LangChain + chromadb + 大模型 ,这类方法比较适合企业存在大量的零散知识文档,我们的问题通常基于多个文档内容的,使用大模型的能力对找到的内容进行总结提升。

四、微调大语言模型

这种模式也比较适合搭建本地知识库,其原理是使用lora在大语言模型transformer的神经网络基础上,训练一个旁路网,本地问题可以通过旁路网络进行回答,效果较好。

**ps:**训练旁路网络的意义:因为预训练的大语言模型本身数据量较大,如果将本地一些知识放入大语言模型神经网络中,其实对大语言模型影响较小(毕竟数据量较少),所以我们考虑训练一个旁路网络,这样权重就在新的旁路网络中实现,可以实现堪比全量调参的效果

相关推荐
CSDN专家-赖老师(软件之家)7 分钟前
养老院管理系统+小程序项目需求分析文档
vue.js·人工智能·小程序·mybatis·springboot
emperinter25 分钟前
WordCloudStudio Now Supports AliPay for Subscriptions !
人工智能·macos·ios·信息可视化·中文分词
南门听露1 小时前
无监督跨域目标检测的语义一致性知识转移
人工智能·目标检测·计算机视觉
夏沫の梦1 小时前
常见LLM大模型概览与详解
人工智能·深度学习·chatgpt·llama
WeeJot嵌入式1 小时前
线性代数与数据挖掘:人工智能中的核心工具
人工智能·线性代数·数据挖掘
AI小白龙*2 小时前
Windows环境下搭建Qwen开发环境
人工智能·windows·自然语言处理·llm·llama·ai大模型·ollama
cetcht88882 小时前
光伏电站项目-视频监控、微气象及安全警卫系统
运维·人工智能·物联网
惯师科技2 小时前
TDK推出第二代用于汽车安全应用的6轴IMU
人工智能·安全·机器人·汽车·imu
HPC_fac130520678163 小时前
科研深度学习:如何精选GPU以优化服务器性能
服务器·人工智能·深度学习·神经网络·机器学习·数据挖掘·gpu算力
猎嘤一号4 小时前
个人笔记本安装CUDA并配合Pytorch使用NVIDIA GPU训练神经网络的计算以及CPUvsGPU计算时间的测试代码
人工智能·pytorch·神经网络