探索进程控制第一弹(进程终止、进程等待)

文章目录

进程创建

初识fork函数

在linux中fork函数时非常重要的函数,它从已存在进程中创建一个新进程。新进程为子进程,而原进程为父进程。

cpp 复制代码
#include <unistd.h>
pid_t fork(void);

返回值:自进程中返回0,父进程返回子进程id,出错返回-1。

进程=内核相关管理数据结构(task_struct、mm_struct、页表)+代码和数据

对于每一个进程都需要:

  • 分配新的内存块和内核数据结构给子进程
  • 将父进程部分数据结构内容拷贝至子进程
  • 添加子进程到系统进程列表当中
  • fork返回,开始调度器调度

如何理解进程具有独立性??子进程中也有相关管理数据结构也有自己的代码和数据,代码和数据虽然和父进程共享,但是和父进程相互不影响,数据的部分是以写时拷贝时私有,不写时拷贝相当于共享。

当一个进程调用fork之后,就有两个二进制代码相同的进程。而且它们都运行到相同的地方。但每个进程都将可以开始它们自己的旅程。

fork函数返回值

  • 子进程返回0
  • 父进程返回的是子进程的pid

如何做到有两个返回值?
探索父进程和子进程 文章中有详细解释。

为什么给父进程返回的是子进程的pid,给子进程返回0?

父进程必须知道子进程的pid,方便后续对子进程进行标识,进而进行管理;子进程需要通过返回0,来看是否创建成功。

fork常规用法

  • 一个父进程希望复制自己,使父子进程同时执行不同的代码段。例如,父进程等待客户端请求,生成子进程来处理请求。
  • 一个进程要执行一个不同的程序。例如子进程从fork返回后,调用exec函数

fork调用失败的原因

  • 系统中有太多的进程
  • 实际用户的进程数超过了限制

写时拷贝

通常,父子代码共享,父子再不写入时,数据也是共享的,当任意一方试图写入,便以写时拷贝的方式各自一份副本。


进程终止

进程终止是在做什么?

在进程创建的时候,是先有内核数据结构,再有的代码和数据。

终止一个进程的本质是在释放曾经的代码和数据所占据的空间,释放内核数据结构。

在释放内核数据结构时,PCB会延迟释放。

进程终止的情况

代码跑完,结果正确/不正确

main函数的返回值是100,通过echo $?查询。在系统中有一个变量叫做?,查看这个变量使用$?,访问变量内容都可以使用echoecho是内建命令,打印的都是bash内部的变量数据。
$?表示父进程bash获取到的最近一个子进程退出的退出码。退出码为0表示成功,非0表示失败,不同的非0值一方面表示失败,另一方面表示失败原因,每个数字的错误描述都是由操作系统规定,对应的错误描述都是一个字符串。因此平时在写代码时,main函数内部都是return 0,我们在编写C/C++代码都是默认成功的。

cpp 复制代码
#include<stdio.h>    
#include<unistd.h>    
#include<string.h>    
    
int main()    
{    
  for(int errcode=0;errcode<=255;errcode++)    
  {    
    printf("%d:%s\n",errcode,strerror(errcode));                                                                                         
  }    
  printf("I am process,pid:%d,ppid:%d\n",getpid(),getppid());    
  sleep(2);    
  return 100;    
}    

运行结果:

powershell 复制代码
[gwj@iZf8zhv7mi2thjdxsptkb8Z lesson16]$ make
gcc -o myprocess myprocess.c -std=c99
[gwj@iZf8zhv7mi2thjdxsptkb8Z lesson16]$ ./myprocess 
0:Success
1:Operation not permitted
2:No such file or directory
3:No such process
4:Interrupted system call
5:Input/output error
6:No such device or address
7:Argument list too long
8:Exec format error
9:Bad file descriptor
10:No child processes
11:Resource temporarily unavailable
12:Cannot allocate memory
13:Permission denied
14:Bad address
15:Block device required
16:Device or resource busy
17:File exists
18:Invalid cross-device link
19:No such device
20:Not a directory
21:Is a directory
22:Invalid argument
23:Too many open files in system
24:Too many open files
25:Inappropriate ioctl for device
26:Text file busy
27:File too large
28:No space left on device
29:Illegal seek
30:Read-only file system
31:Too many links
32:Broken pipe
33:Numerical argument out of domain
34:Numerical result out of range
35:Resource deadlock avoided
36:File name too long
37:No locks available
38:Function not implemented
39:Directory not empty
40:Too many levels of symbolic links
41:Unknown error 41
42:No message of desired type
43:Identifier removed
44:Channel number out of range
45:Level 2 not synchronized
46:Level 3 halted
47:Level 3 reset
48:Link number out of range
49:Protocol driver not attached
50:No CSI structure available
51:Level 2 halted
52:Invalid exchange
53:Invalid request descriptor
54:Exchange full
55:No anode
56:Invalid request code
57:Invalid slot
58:Unknown error 58
59:Bad font file format
60:Device not a stream
61:No data available
62:Timer expired
63:Out of streams resources
64:Machine is not on the network
65:Package not installed
66:Object is remote
67:Link has been severed
68:Advertise error
69:Srmount error
70:Communication error on send
71:Protocol error
72:Multihop attempted
73:RFS specific error
74:Bad message
75:Value too large for defined data type
76:Name not unique on network
77:File descriptor in bad state
78:Remote address changed
79:Can not access a needed shared library
80:Accessing a corrupted shared library
81:.lib section in a.out corrupted
82:Attempting to link in too many shared libraries
83:Cannot exec a shared library directly
84:Invalid or incomplete multibyte or wide character
85:Interrupted system call should be restarted
86:Streams pipe error
87:Too many users
88:Socket operation on non-socket
89:Destination address required
90:Message too long
91:Protocol wrong type for socket
92:Protocol not available
93:Protocol not supported
94:Socket type not supported
95:Operation not supported
96:Protocol family not supported
97:Address family not supported by protocol
98:Address already in use
99:Cannot assign requested address
100:Network is down
101:Network is unreachable
102:Network dropped connection on reset
103:Software caused connection abort
104:Connection reset by peer
105:No buffer space available
106:Transport endpoint is already connected
107:Transport endpoint is not connected
108:Cannot send after transport endpoint shutdown
109:Too many references: cannot splice
110:Connection timed out
111:Connection refused
112:Host is down
113:No route to host
114:Operation already in progress
115:Operation now in progress
116:Stale file handle
117:Structure needs cleaning
118:Not a XENIX named type file
119:No XENIX semaphores available
120:Is a named type file
121:Remote I/O error
122:Disk quota exceeded
123:No medium found
124:Wrong medium type
125:Operation canceled
126:Required key not available
127:Key has expired
128:Key has been revoked
129:Key was rejected by service
130:Owner died
131:State not recoverable
132:Operation not possible due to RF-kill
133:Memory page has hardware error
134:Unknown error 134
135:Unknown error 135
136:Unknown error 136
137:Unknown error 137
138:Unknown error 138
139:Unknown error 139
140:Unknown error 140
141:Unknown error 141
142:Unknown error 142
143:Unknown error 143
144:Unknown error 144
145:Unknown error 145
146:Unknown error 146
147:Unknown error 147
148:Unknown error 148
149:Unknown error 149
150:Unknown error 150
151:Unknown error 151
152:Unknown error 152
153:Unknown error 153
154:Unknown error 154
155:Unknown error 155
156:Unknown error 156
157:Unknown error 157
158:Unknown error 158
159:Unknown error 159
160:Unknown error 160
161:Unknown error 161
162:Unknown error 162
163:Unknown error 163
164:Unknown error 164
165:Unknown error 165
166:Unknown error 166
167:Unknown error 167
168:Unknown error 168
169:Unknown error 169
170:Unknown error 170
171:Unknown error 171
172:Unknown error 172
173:Unknown error 173
174:Unknown error 174
175:Unknown error 175
176:Unknown error 176
177:Unknown error 177
178:Unknown error 178
179:Unknown error 179
180:Unknown error 180
181:Unknown error 181
182:Unknown error 182
183:Unknown error 183
184:Unknown error 184
185:Unknown error 185
186:Unknown error 186
187:Unknown error 187
188:Unknown error 188
189:Unknown error 189
190:Unknown error 190
191:Unknown error 191
192:Unknown error 192
193:Unknown error 193
194:Unknown error 194
195:Unknown error 195
196:Unknown error 196
197:Unknown error 197
198:Unknown error 198
199:Unknown error 199
200:Unknown error 200
201:Unknown error 201
202:Unknown error 202
203:Unknown error 203
204:Unknown error 204
205:Unknown error 205
206:Unknown error 206
207:Unknown error 207
208:Unknown error 208
209:Unknown error 209
210:Unknown error 210
211:Unknown error 211
212:Unknown error 212
213:Unknown error 213
214:Unknown error 214
215:Unknown error 215
216:Unknown error 216
217:Unknown error 217
218:Unknown error 218
219:Unknown error 219
220:Unknown error 220
221:Unknown error 221
222:Unknown error 222
223:Unknown error 223
224:Unknown error 224
225:Unknown error 225
226:Unknown error 226
227:Unknown error 227
228:Unknown error 228
229:Unknown error 229
230:Unknown error 230
231:Unknown error 231
232:Unknown error 232
233:Unknown error 233
234:Unknown error 234
235:Unknown error 235
236:Unknown error 236
237:Unknown error 237
238:Unknown error 238
239:Unknown error 239
240:Unknown error 240
241:Unknown error 241
242:Unknown error 242
243:Unknown error 243
244:Unknown error 244
245:Unknown error 245
246:Unknown error 246
247:Unknown error 247
248:Unknown error 248
249:Unknown error 249
250:Unknown error 250
251:Unknown error 251
252:Unknown error 252
253:Unknown error 253
254:Unknown error 254
255:Unknown error 255
I am process,pid:32312,ppid:31371

对应的错误码都表示一种错误。

父进程为什么知道子进程退出码?父进程要知道子进程的退出情况(失败了还是成功了,失败的原因是什么),bash会反馈给用户。

举个例子:

进程的退出码存在的意义是告诉关心方(父进程),我把任务执行的怎么样了。既然把子进程创建出来,就要让父进程得到信息。

不是说echo $?保存的是最近一个子进程退出的退出码吗?那上图怎么解释?方框中第一个echo $?执行的命令是查看process的退出码,第二个echo $?查看的是第一个echo $?的退出码,虽然echo是一个内建命令,但是也是当做进程来看待。

进程的退出码可以使用系统官方的定义,你也可以自定义一个退出码。

代码异常终止

代码执行时,出现了异常,提前退出,一旦进程出现异常,退出码有没有意义了

vs编写程序运行时,程序崩溃了,本质是操作系统发现你的程序做了不该做的事情,操作系统杀掉了你的进程。

为什么进程会出现异常?

本质上是因为进程收到了操作系统发出的信号。

段错误,操作系统提前终止进程。

尽管书写的代码进程没有错误,但是接收到了信号,就会有段错误。

进程退出时,我们可以看进程退出信号是多少来判断进程为什么异常。

进程退出的三种情况:
代码运行完毕,结果正确
代码运行完毕,结果不正确
代码异常终止

因此,衡量一个进程退出,我们只需要看两个数字:退出码、退出信号

如何终止

  1. main函数中直接return,表示进程终止(非main函数,return函数结束)
  2. 代码调用exit(),注意:在代码任意位置调用都表示进程终止。
c 复制代码
#include<stdio.h>    
#include<unistd.h>    
#include<string.h>    
#include<stdlib.h>                                                 
int main()    
{    
  while(1)    
  {    
    printf("I am process,pid:%d,ppid:%d\n",getpid(),getppid());
    sleep(2);    
    exit(123);    
  }    
  return 100;    
}  
c 复制代码
#include <unistd.h>
void exit(int status);

exit最后也会调用exit, 但在调用exit之前,还做了其他工作:

  • 执行用户通过 atexit或on_exit定义的清理函数。
  • 关闭所有打开的流,所有的缓存数据均被写入
  • 调用_exit
  1. 调用_exit()函数
c 复制代码
#include <unistd.h>
void _exit(int status);

参数:status 定义了进程的终止状态,父进程通过wait来获取该值

说明:虽然status是int,但是仅有低8位可以被父进程所用。所以_exit(-1)时,在终端执行$?发现返回值是255。

c 复制代码
#include<stdio.h>    
#include<unistd.h>    
#include<string.h>    
#include<stdlib.h>                                                 
int main()    
{    
  while(1)    
  {    
    printf("I am process,pid:%d,ppid:%d\n",getpid(),getppid());
    sleep(2);    
    _exit(-1);    
  }    
  return 100;    
}  

exit_exit区别:
exit会在程序退出时,冲刷缓冲区,_exit不会。

进程等待

概述

什么是进程等待?
任何子进程,在退出的情况下,一般必须要被父进程等待。 进程在退出的时候,如果父进程不管不顾,退出进程,处于僵尸状态(Z),存在内存泄漏。


为什么?

  1. 父进程通过等待,解决子进程退出的僵尸问题,回收系统资源(一定要考虑的)
  2. 父进程获取子进程的退出信息,知道子进程退出原因(可选的功能)

进程等待方法

wait方法

c 复制代码
#include<sys/types.h>
#include<sys/wait.h>
pid_t wait(int*status);

返回值:

成功返回被等待进程pid,失败返回-1。

参数:

输出型参数,获取子进程退出状态,不关心则可以设置成为NULL。

代码势力:

c 复制代码
#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<stdlib.h>
#include<sys/types.h>
#include<sys/wait.h>

void ChildRun()
{
  int cnt=5;
  while(cnt)
  {
    printf("I am child process,pid:%d,ppid:%d,cnt=%d\n",getpid(),getppid(),cnt);
    sleep(1);
    cnt--;
  }
}

int main()
{
  printf("I am father,pid:%d,ppid:%d\n",getpid(),getppid());
  pid_t id=fork();

  if(id==0)                                                                        
  {
    //child
    ChildRun();
    printf("child process quit...\n");
    exit(0);
  }

  sleep(10);
  //father
  pid_t rid=wait(NULL);
  if(rid>0)
  {
    printf("wait process,rid:%d\n",rid);
  }

  sleep(3);
  printf("father process quit...\n");
  return 0;
}

运行结果:

在上述代码中,先进入父进程,然后子进程运行五次后子进程退出,然后休眠10秒,处于僵尸状态,紧接着进程等待,然后父进程退出,程序运行结束。由此可以看出,等待会解决进程的僵尸问题。

将上述代码sleep(10)代码注释掉,子进程运行5秒后直接退出,立马执行父进程等待。如果子进程没有退,其实父进程一直在阻塞等待。子进程本身是软件,父进程本质是在等待某种软件就绪。

进程的等待本质是将进程的PCB列入等待队列。那么如何理解父进程阻塞等待子进程?父进程不被调度,在执行wait发现子进程还没有退出,父进程就不要调度,实际上就是将父进程PCB列入等待队列,处于S状态(非运行状态),等到子进程退出,唤醒父进程。

waitpid

c 复制代码
#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

int  waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);
  • 返回值:

当正常返回的时候waitpid返回收集到的子进程的进程ID;

如果设置了选项WNOHANG,而调用中waitpid发现没有已退出的子进程可收集,则返回0;

如果调用中出错,则返回-1,这时errno会被设置成相应的值以指示错误所在;

  • 参数:

  • [ ]

  • pid:

  1. Pid=-1,等待任一个子进程。与wait等效。
    pid_t rid=waitpid(-1,NULL,0);等待任何一个子进程退出,哪一个进程退了,就对应返回哪一个进程的pid。等同于 pid_t rid=wait(NULL);

  2. Pid>0.等待其进程ID与pid相等的子进程。

  3. pid_t rid=waitpid(id,NULL,0);

  • status:典型输出型参数
  1. WIFEXITED(status): 若为正常终止子进程返回的状态,则为真。(查看进程是否是正常退出)
  2. WEXITSTATUS(status): 若WIFEXITED非零,提取子进程退出码。(查看进程的退出码)

以位图的形式返回

退出码范围:0~255

信号终止:128个

代码:

c 复制代码
#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<stdlib.h>
#include<sys/types.h>
#include<sys/wait.h>

void ChildRun()
{
  int cnt=5;
  while(cnt)
  {
    printf("I am child process,pid:%d,ppid:%d,cnt=%d\n",getpid(),getppid(),cnt);
    sleep(1);
    cnt--;
  }
}

int main()
{
  printf("I am father,pid:%d,ppid:%d\n",getpid(),getppid());
  pid_t id=fork();

  if(id==0)                                                                                                                        
  {
    //child
    ChildRun();
    printf("child process quit...\n");
    exit(1);
  }

  sleep(7);
  //father
  //pid_t rid=wait(NULL);
  int status=0;
  pid_t rid=waitpid(id,&status,0);
  if(rid>0)
  {
    printf("wait process,rid:%d\n",rid);
  }

  sleep(3);
  printf("father process quit,status:%d,child quit code:%d,child quit signal:%d\n",status,(status>>8)&0xFF,status & 0x7F);

  return 0;
}

运行结果:

宏定义方式等待:

等待是必须的,但获取子进程的退出信息不是必须的。

如果子进程没有退出,而父进程在执行waitpid进行等待,阻塞等待,这本质上是进程阻塞,waitpid在等待某种条件发生(子进程退出),在等待期间,父进程什么也没干。

接下来就介绍非阻塞等待!!!

  • options:
    WNOHANG: 若pid指定的子进程没有结束,则waitpid()函数返回0,不予以等待。若正常结束,则返回该子进程的ID。
    pid_t>0:等待成功,子进程退出,并且父进程回收成功
    pid_t<0:等待失败
    pid_t==0:检测成功,但是子进程还没有退出,需要进行下一次重复等待。
    非阻塞等待的时候+循环=非阻塞轮询
    好处:允许父进程做一些其他的事情
c 复制代码
#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<stdlib.h>
#include<sys/types.h>
#include<sys/wait.h>

void ChildRun()
{
  int cnt=5;
  while(cnt)
  {
    printf("I am child process,pid:%d,ppid:%d,cnt=%d\n",getpid(),getppid(),cnt);
    sleep(1);
    cnt--;
  }
}

int main()
{
  printf("I am father,pid:%d,ppid:%d\n",getpid(),getppid());
  pid_t id=fork();
if(id==0)
  {
    //child
    ChildRun();
    printf("child process quit...\n");
    exit(1);
  }
  
  //father
  while(1)                                                                                                                               
  {
      int status=0;
      pid_t rid=waitpid(id,&status,WNOHANG);
      if(rid==0)
      {
        sleep(1);
        printf("child is running,father check next time!\n");
      }
      else if(id>0)
      {
        if(WIFEXITED(status))
        {
          printf("child quit success,child exit code:%d\n",WEXITSTATUS(status));
        }
        else 
        {
          printf("child quit unnormal!\n");
        }
        break;
      }
      else 
      {
        printf("waitpid failed!\n");
        break;
      }
  }
}

相关推荐
软件技术员3 分钟前
Let‘s Encrypt SSL证书:acmessl.cn申请免费3个月证书
服务器·网络协议·ssl
哎呦喂-ll15 分钟前
Linux进阶:环境变量
linux
耗同学一米八16 分钟前
2024 年河北省职业院校技能大赛网络建设与运维赛项样题四
运维·网络
Rverdoser16 分钟前
Linux环境开启MongoDB的安全认证
linux·安全·mongodb
PigeonGuan27 分钟前
【jupyter】linux服务器怎么使用jupyter
linux·ide·jupyter
一条晒干的咸魚42 分钟前
【Web前端】创建我的第一个 Web 表单
服务器·前端·javascript·json·对象·表单
东华果汁哥1 小时前
【linux 免密登录】快速设置kafka01、kafka02、kafka03 三台机器免密登录
linux·运维·服务器
咖喱鱼蛋1 小时前
Ubuntu安装Electron环境
linux·ubuntu·electron
ac.char1 小时前
在 Ubuntu 系统上安装 npm 环境以及 nvm(Node Version Manager)
linux·ubuntu·npm