基于深度学习网络的鞋子种类识别matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

复制代码
load gnet.mat
% 使用训练好的网络对验证数据进行分类预测
[Predicted_Label, Probability] = classify(net, Augmented_Validation_Image);
% 计算准确率
accuracy = mean(Predicted_Label == Validation_Dataset.Labels);
% 随机选择16个样本进行可视化
index = randperm(numel(Augmented_Validation_Image.Files), 32);
figure

for i = 1:16
    subplot(4,4,i)
    I = readimage(Validation_Dataset, index(i));
    imshow(I)
    label = Predicted_Label(index(i));
    title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");% 显示预测标签和置信度
end
figure

for i = 1:16
    subplot(4,4,i)
    I = readimage(Validation_Dataset, index(i+16));
    imshow(I)
    label = Predicted_Label(index(i+16));
    title(string(label) + ", " + num2str(100*max(Probability(index(i+16), :)), 3) + "%");% 显示预测标签和置信度
end
127

4.算法理论概述

基于GoogLeNet深度学习网络的鞋子种类识别是一种利用深度卷积神经网络进行物体识别的方法,特别适用于大规模图像分类问题。GoogLeNet以其独特的Inception模块和高效的层级结构,在ImageNet竞赛中取得了卓越的成绩,同样也适合用于鞋子种类识别。

GoogLeNet的核心创新在于Inception模块,该模块通过并行使用多个不同大小的卷积核在同一输入上执行卷积,有效捕获了多种尺度下的特征。

在整个训练过程中,GoogLeNet会逐步学习如何从输入图像中抽取与鞋子种类相关的关键特征,进而实现高精度的鞋子分类。同时,网络设计中的多尺度特性使其能更好地适应不同大小、视角变化的鞋子图像。

此外,GoogLeNet还引入了一些额外的技术来改善性能和稳定性,如批量归一化(Batch Normalization)、空洞卷积(Atrous Convolution)以及标签平滑(Label Smoothing)等,进一步提升了模型在鞋子种类识别任务上的表现。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
珠海西格电力2 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
じ☆冷颜〃2 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
启途AI3 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_13 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客3 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨3 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦3 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
小和尚同志3 小时前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc
HyperAI超神经3 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
芯盾时代3 小时前
石油化工行业网络风险解决方案
网络·人工智能·信息安全