基于深度学习网络的鞋子种类识别matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

复制代码
load gnet.mat
% 使用训练好的网络对验证数据进行分类预测
[Predicted_Label, Probability] = classify(net, Augmented_Validation_Image);
% 计算准确率
accuracy = mean(Predicted_Label == Validation_Dataset.Labels);
% 随机选择16个样本进行可视化
index = randperm(numel(Augmented_Validation_Image.Files), 32);
figure

for i = 1:16
    subplot(4,4,i)
    I = readimage(Validation_Dataset, index(i));
    imshow(I)
    label = Predicted_Label(index(i));
    title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");% 显示预测标签和置信度
end
figure

for i = 1:16
    subplot(4,4,i)
    I = readimage(Validation_Dataset, index(i+16));
    imshow(I)
    label = Predicted_Label(index(i+16));
    title(string(label) + ", " + num2str(100*max(Probability(index(i+16), :)), 3) + "%");% 显示预测标签和置信度
end
127

4.算法理论概述

基于GoogLeNet深度学习网络的鞋子种类识别是一种利用深度卷积神经网络进行物体识别的方法,特别适用于大规模图像分类问题。GoogLeNet以其独特的Inception模块和高效的层级结构,在ImageNet竞赛中取得了卓越的成绩,同样也适合用于鞋子种类识别。

GoogLeNet的核心创新在于Inception模块,该模块通过并行使用多个不同大小的卷积核在同一输入上执行卷积,有效捕获了多种尺度下的特征。

在整个训练过程中,GoogLeNet会逐步学习如何从输入图像中抽取与鞋子种类相关的关键特征,进而实现高精度的鞋子分类。同时,网络设计中的多尺度特性使其能更好地适应不同大小、视角变化的鞋子图像。

此外,GoogLeNet还引入了一些额外的技术来改善性能和稳定性,如批量归一化(Batch Normalization)、空洞卷积(Atrous Convolution)以及标签平滑(Label Smoothing)等,进一步提升了模型在鞋子种类识别任务上的表现。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
endcy201617 小时前
基于Spring AI的RAG和智能体应用实践
人工智能·ai·系统架构
Blossom.11818 小时前
移动端部署噩梦终结者:动态稀疏视觉Transformer的量化实战
java·人工智能·python·深度学习·算法·机器学习·transformer
FPGA小迷弟18 小时前
ChatGPT回答用AI怎么怎么赚钱
大数据·人工智能
轻微的风格艾丝凡18 小时前
卷积的直观理解
人工智能·深度学习·神经网络·算法·计算机视觉·matlab·cnn
月下倩影时18 小时前
视觉进阶篇——机器学习训练过程(手写数字识别,量大管饱需要耐心)
人工智能·学习·机器学习
PixelMind18 小时前
【超分辨率专题】HYPIR:扩散模型先验与 GAN 对抗训练相结合的新型图像复原框架
人工智能·生成对抗网络·扩散模型·图像复原
说私域19 小时前
从裂变能力竞争到技术水平竞争:开源AI智能名片链动2+1模式S2B2C商城小程序对微商企业竞争格局的重塑
人工智能·小程序·开源
xybDIY19 小时前
基于 Tuya.AI 开源的大模型构建智能聊天机器人
人工智能·机器人·开源
这张生成的图像能检测吗19 小时前
(论文速读)基于DCP-MobileViT网络的焊接缺陷识别
图像处理·深度学习·计算机视觉·可视化·缺陷识别·焊缝缺陷
智慧地球(AI·Earth)21 小时前
GPT-5.1发布!你的AI更暖更智能!
人工智能·gpt·神经网络·aigc·agi