基于深度学习网络的鞋子种类识别matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

复制代码
load gnet.mat
% 使用训练好的网络对验证数据进行分类预测
[Predicted_Label, Probability] = classify(net, Augmented_Validation_Image);
% 计算准确率
accuracy = mean(Predicted_Label == Validation_Dataset.Labels);
% 随机选择16个样本进行可视化
index = randperm(numel(Augmented_Validation_Image.Files), 32);
figure

for i = 1:16
    subplot(4,4,i)
    I = readimage(Validation_Dataset, index(i));
    imshow(I)
    label = Predicted_Label(index(i));
    title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");% 显示预测标签和置信度
end
figure

for i = 1:16
    subplot(4,4,i)
    I = readimage(Validation_Dataset, index(i+16));
    imshow(I)
    label = Predicted_Label(index(i+16));
    title(string(label) + ", " + num2str(100*max(Probability(index(i+16), :)), 3) + "%");% 显示预测标签和置信度
end
127

4.算法理论概述

基于GoogLeNet深度学习网络的鞋子种类识别是一种利用深度卷积神经网络进行物体识别的方法,特别适用于大规模图像分类问题。GoogLeNet以其独特的Inception模块和高效的层级结构,在ImageNet竞赛中取得了卓越的成绩,同样也适合用于鞋子种类识别。

GoogLeNet的核心创新在于Inception模块,该模块通过并行使用多个不同大小的卷积核在同一输入上执行卷积,有效捕获了多种尺度下的特征。

在整个训练过程中,GoogLeNet会逐步学习如何从输入图像中抽取与鞋子种类相关的关键特征,进而实现高精度的鞋子分类。同时,网络设计中的多尺度特性使其能更好地适应不同大小、视角变化的鞋子图像。

此外,GoogLeNet还引入了一些额外的技术来改善性能和稳定性,如批量归一化(Batch Normalization)、空洞卷积(Atrous Convolution)以及标签平滑(Label Smoothing)等,进一步提升了模型在鞋子种类识别任务上的表现。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
jianqiang.xue12 分钟前
单片机图形化编程:课程目录介绍 总纲
c++·人工智能·python·单片机·物联网·青少年编程·arduino
heisd_125 分钟前
在编译opencv出现的问题
人工智能·opencv·计算机视觉
三更两点29 分钟前
第136期 谷歌Jules Tools反击Copilot的主导地位:重新定义工作流自动化18
人工智能
文火冰糖的硅基工坊38 分钟前
[嵌入式系统-100]:IoT(物联网)与AIoT(人工智能物联网)
人工智能·物联网·架构·创业
淬炼之火1 小时前
基于pycharm和anaconda的yolo简单部署测试
python·深度学习·yolo·pycharm·ultralytics
搞科研的小刘选手2 小时前
【早稻田大学主办】2026年第三届人工智能与未来教育国际学术会议(AIFE 2026)
人工智能·机器学习·数据挖掘·机器人·未来教育·远程教育·移动学习
数据与人工智能律师2 小时前
解码Web3:DeFi、GameFi、SocialFi的法律风险警示与合规路径
大数据·网络·人工智能·云计算·区块链
Best_Me072 小时前
理解AUROC,AP,F1-scroe,PRO
人工智能·机器学习
ghie90902 小时前
基于MATLAB的遗传算法优化支持向量机实现
算法·支持向量机·matlab
IT_陈寒2 小时前
React 性能优化:5个实战技巧让首屏加载提升50%,开发者亲测有效!
前端·人工智能·后端