(WSI分类)WSI分类文献小综述 2024

2024的WSI分类。

Multiple Instance Learning Framework with Masked Hard Instance Mining for Whole Slide Image Classification (ICCV2024)

由于阳性组织只占 Gi- gapixel WSI 的一小部分,因此现有的 MIL 方法直观上侧重于通过注意力机制识别突出实例。然而,这会导致偏向于易于分类的实例,而忽略难以分类的实例。一些文献显示,难以分类的实例有利于准确地建立判别边界模型。通过在实例层面应用这种想法,我们详细阐述了一种新型的 MIL 框架,该框架采用带有一致性约束的连体结构(教师-学生)来挖掘潜在的硬实例(MHIM-MIL)。MHIM-MIL 采用基于注意力分数的多种实例掩蔽策略,利用一个模数教师来隐式挖掘硬实例,用于训练学生模型,而学生模型可以是任何基于注意力的 MIL 模型。

Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology (CVPR 2024)

多实例学习(MIL)是计算病理学中应用最广泛的框架,包括亚型、诊断、预后等。然而,当前的 MIL 范例通常需要离线实例特征提取器,如预训练的 ResNet 或查找模型。这种方法缺乏在特定下游任务中对特征进行微调的能力,从而限制了其适应性和性能。为解决这一问题,我们提出了一种重新嵌入区域转换器(Re-embedded Regional Transformer,R2T),用于在线重新嵌入实例特征,它可以捕捉细粒度的局部特征,并在不同区域之间建立连接。与现有的专注于预先训练功能强大的特征提取器或设计复杂的实例聚合器的工作不同,R2T 专门用于在线重新嵌入实例特征

MambaMIL: Enhancing Long Sequence Modeling with Sequence Reordering in Computational Pathology(arivx 2024)

Mamba做的,不做评价。

MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models (arivx 2024)

Mamba+TransMIL的魔改,不做评价,列出来仅仅是因为用的是比较火的Mamba。实验做得不太能让人信服。

待更新。。。

相关推荐
OpenBayes21 小时前
教程上新丨Deepseek-OCR 以极少视觉 token 数在端到端模型中实现 SOTA
人工智能·深度学习·机器学习·ocr·大语言模型·文本处理·deepseek
啊吧怪不啊吧21 小时前
二分查找算法介绍及使用
数据结构·算法·leetcode
知识搬运工人1 天前
对比 DeepSeek(MLA)、Qwen 和 Llama 系列大模型在 Attention 架构/算法层面的核心设计及理解它们的本质区别。
算法
蓝海星梦1 天前
【论文笔记】R-HORIZON:重塑长周期推理评估与训练范式
论文阅读·人工智能·深度学习·自然语言处理·大型推理模型
da_vinci_x1 天前
Substance 3D 材质流:AI 快速生成与程序化精修
人工智能·游戏·3d·材质·设计师·技术美术·游戏美术
aneasystone本尊1 天前
重温 Java 21 之密钥封装机制 API
人工智能
欢聚赢销CRM1 天前
从“各自为战“到“数据协同“:销采一体化CRM正在重构供应链竞争力
大数据·人工智能·重构·数据分析
IT_陈寒1 天前
Python 3.12 新特性实战:10个让你代码更优雅的隐藏技巧
前端·人工智能·后端
说私域1 天前
基于开源AI智能名片链动2+1模式与S2B2C商城小程序的商家活动策略研究
人工智能·小程序
亚马逊云开发者1 天前
Agentic AI基础设施实践经验系列(八):Agent应用的隐私和安全
人工智能