(WSI分类)WSI分类文献小综述 2024

2024的WSI分类。

Multiple Instance Learning Framework with Masked Hard Instance Mining for Whole Slide Image Classification (ICCV2024)

由于阳性组织只占 Gi- gapixel WSI 的一小部分,因此现有的 MIL 方法直观上侧重于通过注意力机制识别突出实例。然而,这会导致偏向于易于分类的实例,而忽略难以分类的实例。一些文献显示,难以分类的实例有利于准确地建立判别边界模型。通过在实例层面应用这种想法,我们详细阐述了一种新型的 MIL 框架,该框架采用带有一致性约束的连体结构(教师-学生)来挖掘潜在的硬实例(MHIM-MIL)。MHIM-MIL 采用基于注意力分数的多种实例掩蔽策略,利用一个模数教师来隐式挖掘硬实例,用于训练学生模型,而学生模型可以是任何基于注意力的 MIL 模型。

Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology (CVPR 2024)

多实例学习(MIL)是计算病理学中应用最广泛的框架,包括亚型、诊断、预后等。然而,当前的 MIL 范例通常需要离线实例特征提取器,如预训练的 ResNet 或查找模型。这种方法缺乏在特定下游任务中对特征进行微调的能力,从而限制了其适应性和性能。为解决这一问题,我们提出了一种重新嵌入区域转换器(Re-embedded Regional Transformer,R2T),用于在线重新嵌入实例特征,它可以捕捉细粒度的局部特征,并在不同区域之间建立连接。与现有的专注于预先训练功能强大的特征提取器或设计复杂的实例聚合器的工作不同,R2T 专门用于在线重新嵌入实例特征

MambaMIL: Enhancing Long Sequence Modeling with Sequence Reordering in Computational Pathology(arivx 2024)

Mamba做的,不做评价。

MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models (arivx 2024)

Mamba+TransMIL的魔改,不做评价,列出来仅仅是因为用的是比较火的Mamba。实验做得不太能让人信服。

待更新。。。

相关推荐
听雨~の(>^ω^<38 分钟前
OSTrack视频单目标跟踪
人工智能·目标跟踪·音视频
说私域1 小时前
基于“开源AI智能名片链动2+1模式S2B2C商城小程序”的私域用户池构建与运营研究
人工智能·小程序
海边夕阳20061 小时前
【每日一个AI小知识】:什么是多模态AI?
人工智能
songyuc3 小时前
【S2ANet】Align Deep Features for Oriented Object Detection 译读笔记
人工智能·笔记·目标检测
asdfg12589633 小时前
DETR:新一代目标检测范式综述
人工智能·目标检测·目标跟踪
程序员buddha3 小时前
C语言数组详解
c语言·开发语言·算法
doubao364 小时前
如何有效降低AIGC生成内容被识别的概率?
人工智能·深度学习·自然语言处理·aigc·ai写作
SEO_juper4 小时前
AEO终极指南:步步为营,提升内容的AI可见性
人工智能·ai·seo·数字营销·aeo
蒙奇D索大5 小时前
【算法】递归算法的深度实践:从布尔运算到二叉树剪枝的DFS之旅
笔记·学习·算法·leetcode·深度优先·剪枝
卡提西亚5 小时前
C++笔记-25-函数模板
c++·笔记·算法