MATLAB计算投资组合的cVaR和VaR

计算条件风险价值 (Conditional Value-at-Risk, cVaR) 是一种衡量投资组合风险的方法,它关注的是损失分布的尾部风险。

MATLAB代码如下:

Matlab 复制代码
clc;close all;clear all;warning off;%清除变量
rand('seed', 100);
randn('seed', 100);
format long g;

% 随机产生数据(例如,投资组合的日收益率)
nSamples = 1000; % 设置样本数量
returns = normrnd(0, 0.01, [nSamples, 1]); % 正态分布的随机收益率

% 定义置信水平
confidenceLevel = 0.95; % 95%的置信水平

% 对收益率进行排序
[sortedReturns, sortIndices] = sort(returns);

% 计算VaR(Value-at-Risk)
VaRIndex = round(confidenceLevel * nSamples);
VaR = sortedReturns(VaRIndex);

% 计算cVaR
% cVaR是损失超过VaR的期望值
cVaRIndexStart = VaRIndex + 1;
cVaR = mean(sortedReturns(cVaRIndexStart:end));

% 输出结果
fprintf('VaR at %d%% confidence level is: %.4f\n', round(confidenceLevel*100), VaR);
fprintf('cVaR at %d%% confidence level is: %.4f\n', round(confidenceLevel*100), cVaR);

% 数据可视化
figure;
histogram(returns, 'Normalization', 'pdf', 'BinMethod', 'auto');
hold on;
% 绘制VaR和cVaR线
xlimits = xlim;
plot([VaR, VaR], ylim, 'r--', 'LineWidth', 2);
% text(VaR, ylim(2)*0.7, sprintf('VaR: %.4f', VaR), 'Color', 'r');

% cVaR是一个期望值,所以我们用一个点来表示它在直方图上的位置
plot(cVaR, 0, 'bo', 'MarkerSize', 10, 'MarkerFaceColor', 'b');
% text(cVaR, ylim(2)*0.6, sprintf('cVaR: %.4f', cVaR), 'Color', 'b');

% 设置图表标题和坐标轴标签
title('投资组合收益率分布与VaR、cVaR');
xlabel('收益率');
ylabel('概率密度');

% 释放hold状态
hold off;

程序结果如下:

相关推荐
打码人的日常分享10 小时前
智慧城市一网统管建设方案,新型城市整体建设方案(PPT)
大数据·运维·服务器·人工智能·信息可视化·智慧城市
ChatPPT_YOO17 小时前
AIPPT工具主题生成深度对比:为什么ChatPPT更胜一筹?
人工智能·信息可视化·powerpoint·ai生成ppt·ppt制作
蚂蚁取经19 小时前
Qt C++ 小部件 QCustomPlot 的使用
c++·qt·信息可视化
数峦云数字孪生三维可视化20 小时前
魔观3DS智慧工厂数字孪生立体监测系统:让数字孪生“立体可感”的智能中枢
大数据·人工智能·物联网·信息可视化·数字孪生
yinmaisoft20 小时前
6 大数据库一键连!JNPF 数据中心数据源链接,表单数据互通无压力
前端·数据库·低代码·信息可视化
GISer_Jing21 小时前
SSE Conf 大会分享——AI Native 3D开发革命,让创意不再被技术门槛阻挡(推荐!!!)
前端·人工智能·3d·信息可视化
易知微EasyV数据可视化1 天前
数字孪生可视化破局多行业痛点,EasyV 场景化方案重构效率逻辑:行业demo拆解合集
经验分享·信息可视化·数字孪生
DMD1681 天前
AI赋能旅游与酒店业:技术逻辑与开发实践解析
大数据·人工智能·信息可视化·重构·旅游·产业升级
图扑数字孪生2 天前
基于 HT 数字孪生微电网:源网荷储一体化管控平台开发
信息可视化·数字孪生·微电网·电力能源·源网荷储
图扑可视化2 天前
基于 HT 数字孪生微电网管控平台开发实践
信息可视化·数字孪生·三维可视化·源网荷储