MATLAB计算投资组合的cVaR和VaR

计算条件风险价值 (Conditional Value-at-Risk, cVaR) 是一种衡量投资组合风险的方法,它关注的是损失分布的尾部风险。

MATLAB代码如下:

Matlab 复制代码
clc;close all;clear all;warning off;%清除变量
rand('seed', 100);
randn('seed', 100);
format long g;

% 随机产生数据(例如,投资组合的日收益率)
nSamples = 1000; % 设置样本数量
returns = normrnd(0, 0.01, [nSamples, 1]); % 正态分布的随机收益率

% 定义置信水平
confidenceLevel = 0.95; % 95%的置信水平

% 对收益率进行排序
[sortedReturns, sortIndices] = sort(returns);

% 计算VaR(Value-at-Risk)
VaRIndex = round(confidenceLevel * nSamples);
VaR = sortedReturns(VaRIndex);

% 计算cVaR
% cVaR是损失超过VaR的期望值
cVaRIndexStart = VaRIndex + 1;
cVaR = mean(sortedReturns(cVaRIndexStart:end));

% 输出结果
fprintf('VaR at %d%% confidence level is: %.4f\n', round(confidenceLevel*100), VaR);
fprintf('cVaR at %d%% confidence level is: %.4f\n', round(confidenceLevel*100), cVaR);

% 数据可视化
figure;
histogram(returns, 'Normalization', 'pdf', 'BinMethod', 'auto');
hold on;
% 绘制VaR和cVaR线
xlimits = xlim;
plot([VaR, VaR], ylim, 'r--', 'LineWidth', 2);
% text(VaR, ylim(2)*0.7, sprintf('VaR: %.4f', VaR), 'Color', 'r');

% cVaR是一个期望值,所以我们用一个点来表示它在直方图上的位置
plot(cVaR, 0, 'bo', 'MarkerSize', 10, 'MarkerFaceColor', 'b');
% text(cVaR, ylim(2)*0.6, sprintf('cVaR: %.4f', cVaR), 'Color', 'b');

% 设置图表标题和坐标轴标签
title('投资组合收益率分布与VaR、cVaR');
xlabel('收益率');
ylabel('概率密度');

% 释放hold状态
hold off;

程序结果如下:

相关推荐
计算机学姐2 小时前
基于SpringBoot的校园资源共享系统【个性化推荐算法+数据可视化统计】
java·vue.js·spring boot·后端·mysql·spring·信息可视化
dajun1811234565 小时前
跨部门工作流泳道图在线绘制工具 PC
大数据·数据库·人工智能·信息可视化·架构·流程图
AC赳赳老秦6 小时前
医疗数据安全处理:DeepSeek实现敏感信息脱敏与结构化提取
大数据·服务器·数据库·人工智能·信息可视化·数据库架构·deepseek
专注数据的痴汉7 小时前
「数据获取」吉林地理基础数据(道路、水系、四级行政边界、地级城市、DEM等)
大数据·人工智能·信息可视化
骆驼爱记录7 小时前
PPT高效技巧:30秒提升制作速度
信息可视化
专注数据的痴汉8 小时前
「数据获取」中国会计年鉴(1996-2024)
大数据·人工智能·信息可视化
AI_56788 小时前
基于职业发展的Python与Java深度对比分析
java·人工智能·python·信息可视化
CCPC不拿奖不改名1 天前
数据处理与分析:数据可视化的面试习题
开发语言·python·信息可视化·面试·职场和发展
无忧智库1 天前
基于多模态大模型的城市运行“一网统管”智能体(Agent)系统可行性研究报告深度解析(WORD)
信息可视化
黄河里的小鲤鱼1 天前
拯救草台班子-战略
人工智能·python·信息可视化