MATLAB计算投资组合的cVaR和VaR

计算条件风险价值 (Conditional Value-at-Risk, cVaR) 是一种衡量投资组合风险的方法,它关注的是损失分布的尾部风险。

MATLAB代码如下:

Matlab 复制代码
clc;close all;clear all;warning off;%清除变量
rand('seed', 100);
randn('seed', 100);
format long g;

% 随机产生数据(例如,投资组合的日收益率)
nSamples = 1000; % 设置样本数量
returns = normrnd(0, 0.01, [nSamples, 1]); % 正态分布的随机收益率

% 定义置信水平
confidenceLevel = 0.95; % 95%的置信水平

% 对收益率进行排序
[sortedReturns, sortIndices] = sort(returns);

% 计算VaR(Value-at-Risk)
VaRIndex = round(confidenceLevel * nSamples);
VaR = sortedReturns(VaRIndex);

% 计算cVaR
% cVaR是损失超过VaR的期望值
cVaRIndexStart = VaRIndex + 1;
cVaR = mean(sortedReturns(cVaRIndexStart:end));

% 输出结果
fprintf('VaR at %d%% confidence level is: %.4f\n', round(confidenceLevel*100), VaR);
fprintf('cVaR at %d%% confidence level is: %.4f\n', round(confidenceLevel*100), cVaR);

% 数据可视化
figure;
histogram(returns, 'Normalization', 'pdf', 'BinMethod', 'auto');
hold on;
% 绘制VaR和cVaR线
xlimits = xlim;
plot([VaR, VaR], ylim, 'r--', 'LineWidth', 2);
% text(VaR, ylim(2)*0.7, sprintf('VaR: %.4f', VaR), 'Color', 'r');

% cVaR是一个期望值,所以我们用一个点来表示它在直方图上的位置
plot(cVaR, 0, 'bo', 'MarkerSize', 10, 'MarkerFaceColor', 'b');
% text(cVaR, ylim(2)*0.6, sprintf('cVaR: %.4f', cVaR), 'Color', 'b');

% 设置图表标题和坐标轴标签
title('投资组合收益率分布与VaR、cVaR');
xlabel('收益率');
ylabel('概率密度');

% 释放hold状态
hold off;

程序结果如下:

相关推荐
谈笑也风生4 分钟前
统计分析 | Minitab软件官方正式版详细下载教程
信息可视化
做cv的小昊2 小时前
【TJU】信息检索与分析课程笔记和练习(4)中文文献检索—CNKI
大数据·经验分享·笔记·学习·信息可视化·全文检索·信息检索
一人の梅雨3 小时前
京东店铺全商品接口深度解析:从层级穿透到数据资产化重构
大数据·信息可视化
qq_2704900964 小时前
基于Hadoop的教育大数据可视化系统的设计与实现
大数据·hadoop·信息可视化
招风的黑耳5 小时前
Axure优质可视化大屏模板图表组件 RP 文件
信息可视化·axure
行思理21 小时前
大屏模板介绍《一》
大数据·信息可视化·大屏端
clarance20151 天前
2025主流BI工具可信能力评估报告:从合规到智能的架构解析
数据库·人工智能·信息可视化·架构·数据挖掘·数据分析
biomooc1 天前
APA | CD47 alternative polyadenylation
信息可视化
东城居士1 天前
初步尝试获得了xlsx文件的数据可视化
信息可视化
Guheyunyi2 天前
安全风险监测预警系统如何重塑企业安全防线
大数据·人工智能·科技·安全·信息可视化