机器学习总结

1. 如何理解机器学习中的有监督学习和无监督学习,举例?

机器学习中的有监督学习和无监督学习是两种主要的学习方式,它们的主要区别在于训练数据是否带有标签。

  1. 有监督学习:
  • 就像你有一个老师,他会给你一堆带有答案的练习题(训练数据),让你去做,然后根据你的答案(预测结果)来纠正你的错误,直到你能够准确地回答各种问题(模型收敛)。在这个过程中,你学会了如何根据题目(输入数据)来得出正确的答案(输出数据)。这种学习方式叫做有监督学习,因为它依赖于带有标签的训练数据。
  • 举个例子,假设你想学习如何识别猫的图片。你有一个老师的帮助,他会给你很多猫的图片,并且每张图片都标记了"这是猫"。通过观察这些图片和对应的标签,你可以学习到识别猫的特征,比如猫的耳朵、眼睛、鼻子等。然后,当你看到一张新的图片时,你就可以根据你已经学到的特征来判断这张图片是否是猫。
  1. 无监督学习:
  • 相比之下,无监督学习就像你在一堆没有答案的练习题中自己摸索,试图找出其中的规律和结构。你通过观察数据之间的相似性、差异性或者其他关系来发现数据的内在结构或者模式。这种学习方式叫做无监督学习,因为它不依赖于带有标签的训练数据。
  • 再举个例子,假设你有一堆没有标记的音乐数据,你想知道这些音乐之间有什么相似之处。你可以通过无监督学习的方法来聚类这些音乐,将它们分成不同的类别,比如古典音乐、流行音乐、摇滚音乐等。在这个过程中,你没有用到任何带有标签的训练数据,而是完全依赖于数据之间的相似性来进行分类。

总的来说,有监督学习依赖于带有标签的训练数据来进行学习,而无监督学习则依赖于数据之间的内在关系来进行学习。这两种学习方式在机器学习中都有广泛的应用,比如图像识别、语音识别、自然语言处理等。

相关推荐
kngines24 分钟前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey24 分钟前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导
昵称是6硬币31 分钟前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
平和男人杨争争1 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习
归去_来兮1 小时前
支持向量机(SVM)分类
机器学习·支持向量机·分类
静心问道1 小时前
XLSR-Wav2Vec2:用于语音识别的无监督跨语言表示学习
人工智能·学习·语音识别
算家计算1 小时前
5 秒预览物理世界,2 行代码启动生成——ComfyUI-Cosmos-Predict2 本地部署教程,重塑机器人训练范式!
人工智能·开源
摆烂工程师1 小时前
国内如何安装和使用 Claude Code 教程 - Windows 用户篇
人工智能·ai编程·claude
云天徽上9 天前
【目标检测】图像处理基础:像素、分辨率与图像格式解析
图像处理·人工智能·目标检测·计算机视觉·数据可视化
Vertira9 天前
PyTorch中的permute, transpose, view, reshape和flatten函数详解(已解决)
人工智能·pytorch·python