机器学习总结

1. 如何理解机器学习中的有监督学习和无监督学习,举例?

机器学习中的有监督学习和无监督学习是两种主要的学习方式,它们的主要区别在于训练数据是否带有标签。

  1. 有监督学习:
  • 就像你有一个老师,他会给你一堆带有答案的练习题(训练数据),让你去做,然后根据你的答案(预测结果)来纠正你的错误,直到你能够准确地回答各种问题(模型收敛)。在这个过程中,你学会了如何根据题目(输入数据)来得出正确的答案(输出数据)。这种学习方式叫做有监督学习,因为它依赖于带有标签的训练数据。
  • 举个例子,假设你想学习如何识别猫的图片。你有一个老师的帮助,他会给你很多猫的图片,并且每张图片都标记了"这是猫"。通过观察这些图片和对应的标签,你可以学习到识别猫的特征,比如猫的耳朵、眼睛、鼻子等。然后,当你看到一张新的图片时,你就可以根据你已经学到的特征来判断这张图片是否是猫。
  1. 无监督学习:
  • 相比之下,无监督学习就像你在一堆没有答案的练习题中自己摸索,试图找出其中的规律和结构。你通过观察数据之间的相似性、差异性或者其他关系来发现数据的内在结构或者模式。这种学习方式叫做无监督学习,因为它不依赖于带有标签的训练数据。
  • 再举个例子,假设你有一堆没有标记的音乐数据,你想知道这些音乐之间有什么相似之处。你可以通过无监督学习的方法来聚类这些音乐,将它们分成不同的类别,比如古典音乐、流行音乐、摇滚音乐等。在这个过程中,你没有用到任何带有标签的训练数据,而是完全依赖于数据之间的相似性来进行分类。

总的来说,有监督学习依赖于带有标签的训练数据来进行学习,而无监督学习则依赖于数据之间的内在关系来进行学习。这两种学习方式在机器学习中都有广泛的应用,比如图像识别、语音识别、自然语言处理等。

相关推荐
搏博7 分钟前
神经网络问题之一:梯度消失(Vanishing Gradient)
人工智能·机器学习
z千鑫7 分钟前
【人工智能】深入理解PyTorch:从0开始完整教程!全文注解
人工智能·pytorch·python·gpt·深度学习·ai编程
YRr YRr15 分钟前
深度学习:神经网络的搭建
人工智能·深度学习·神经网络
威桑18 分钟前
CMake + mingw + opencv
人工智能·opencv·计算机视觉
爱喝热水的呀哈喽21 分钟前
torch张量与函数表达式写法
人工智能·pytorch·深度学习
rellvera28 分钟前
【强化学习的数学原理】第02课-贝尔曼公式-笔记
笔记·机器学习
肥猪猪爸1 小时前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
LZXCyrus1 小时前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
我感觉。2 小时前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
YRr YRr2 小时前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络