RAG学习笔记系列(一)

RAG 介绍

RAG 全称为 Retrieval Augmented Generation(检索增强生成)。是基于LLM构建系统的一种架构。

RAG 基本上可以理解为:搜索 + LLM prompting。根据用户的查询语句,系统会先使用搜索算法获取到相关内容作为上下文,然后将用户查询语句和获取到的上下文一起注入到 prompt 中,然后将 prompt 提供给 LLM 来生成回答内容。

RAG初步实现

RAG 初步实现可以简单分解为以下步骤:

  1. 将待检索文本分割成块
  2. 使用 Transformer Encoder 模型将文本嵌入为向量(embedding),并将向量存储
  3. 构建一个 prompt,可以让模型根据搜索到的内容对用户提出的问题进行回答

使用时

  1. 使用相同的 Transformer Encoder 模型,将用户的查询文本转换成向量
  2. 使用查询的向量从向量存储中找到 top-k 的结果
  3. 将用户提的问题和查询到的文本块一起作为上下文整合到 prompt 中
python 复制代码
def question_answering(context, query):
    prompt = f"""
                Give the answer to the user query delimited by triple backticks ```{query}```\
                using the information given in context delimited by triple backticks ```{context}```.\
                If there is no relevant information in the provided context, try to answer yourself, 
                but tell user that you did not have any relevant context to base your answer on.
                Be concise and output the answer of size less than 80 tokens.
                """

    response = get_completion(instruction, prompt, model="gpt-3.5-turbo")
    answer = response.choices[0].message["content"]
    return answer

高级RAG

高级 RAG 架构如下图所示:

图中,绿色元素为 RAG 核心技术点,蓝色元素为文本。(本架构图对一些细节进行省略,不宜按照本图进行实施)
RAG 核心技术点

复制代码
		 1. 分块和矢量化
		 2. 搜索索引构建
		 3. 重排序和过滤
		 4. 查询转换
		 5. 聊天引擎
		 6. 查询路由
		 7. RAG 中的 Agent
		 8. 响应合成
相关推荐
向阳花开_miemie25 分钟前
Android音频学习(十八)——混音流程
学习·音视频
工大一只猿35 分钟前
51单片机学习
嵌入式硬件·学习·51单片机
c0d1ng1 小时前
量子计算学习(第十四周周报)
学习·量子计算
Hello_Embed8 小时前
STM32HAL 快速入门(二十):UART 中断改进 —— 环形缓冲区解决数据丢失
笔记·stm32·单片机·学习·嵌入式软件
咸甜适中8 小时前
rust语言 (1.88) 学习笔记:客户端和服务器端同在一个项目中
笔记·学习·rust
Grassto9 小时前
RAG 从入门到放弃?丐版 demo 实战笔记(go+python)
笔记
Magnetic_h9 小时前
【iOS】设计模式复习
笔记·学习·ios·设计模式·objective-c·cocoa
研梦非凡10 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
limengshi13839211 小时前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
知识分享小能手11 小时前
React学习教程,从入门到精通,React 组件核心语法知识点详解(类组件体系)(19)
前端·javascript·vue.js·学习·react.js·react·anti-design-vue