RAG学习笔记系列(一)

RAG 介绍

RAG 全称为 Retrieval Augmented Generation(检索增强生成)。是基于LLM构建系统的一种架构。

RAG 基本上可以理解为:搜索 + LLM prompting。根据用户的查询语句,系统会先使用搜索算法获取到相关内容作为上下文,然后将用户查询语句和获取到的上下文一起注入到 prompt 中,然后将 prompt 提供给 LLM 来生成回答内容。

RAG初步实现

RAG 初步实现可以简单分解为以下步骤:

  1. 将待检索文本分割成块
  2. 使用 Transformer Encoder 模型将文本嵌入为向量(embedding),并将向量存储
  3. 构建一个 prompt,可以让模型根据搜索到的内容对用户提出的问题进行回答

使用时

  1. 使用相同的 Transformer Encoder 模型,将用户的查询文本转换成向量
  2. 使用查询的向量从向量存储中找到 top-k 的结果
  3. 将用户提的问题和查询到的文本块一起作为上下文整合到 prompt 中
python 复制代码
def question_answering(context, query):
    prompt = f"""
                Give the answer to the user query delimited by triple backticks ```{query}```\
                using the information given in context delimited by triple backticks ```{context}```.\
                If there is no relevant information in the provided context, try to answer yourself, 
                but tell user that you did not have any relevant context to base your answer on.
                Be concise and output the answer of size less than 80 tokens.
                """

    response = get_completion(instruction, prompt, model="gpt-3.5-turbo")
    answer = response.choices[0].message["content"]
    return answer

高级RAG

高级 RAG 架构如下图所示:

图中,绿色元素为 RAG 核心技术点,蓝色元素为文本。(本架构图对一些细节进行省略,不宜按照本图进行实施)
RAG 核心技术点

复制代码
		 1. 分块和矢量化
		 2. 搜索索引构建
		 3. 重排序和过滤
		 4. 查询转换
		 5. 聊天引擎
		 6. 查询路由
		 7. RAG 中的 Agent
		 8. 响应合成
相关推荐
学会沉淀。17 分钟前
设备如何“开口说话”?
学习
没有钱的钱仔18 分钟前
机器学习笔记
人工智能·笔记·机器学习
好望角雾眠40 分钟前
第四阶段C#通讯开发-9:网络协议Modbus下的TCP与UDP
网络·笔记·网络协议·tcp/ip·c#·modbus
m0_591338911 小时前
day10数组的学习
学习
仰望—星空2 小时前
MiniEngine学习笔记 : CommandListManager
c++·windows·笔记·学习·cg·direct3d
电子云与长程纠缠2 小时前
Blender入门学习09 - 制作动画
学习·blender
电子云与长程纠缠2 小时前
Blender入门学习10 - 曲线绘制
学习·blender
下午见。2 小时前
C语言结构体入门:定义、访问与传参全解析
c语言·笔记·学习
im_AMBER2 小时前
React 16
前端·笔记·学习·react.js·前端框架
lkbhua莱克瓦243 小时前
Java基础——常用算法5
java·开发语言·笔记·github